

SDK K531/INS

Developer's guide

PMDE100 rev. AA

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 2 / 60

CONTENTS

1. INTRODUCTION...4

1.1. PRODUCT BRIEF... 4
1.2. ABOUT THIS MANUAL .. 4
1.3. AUDIENCE.. 4
1.4. SUPPORT AND UPDATES... 5

2. THE K531 PRODUCT FAMILY...6

2.1. K531 PINOUT AND BASIC OPERATION... 6
2.2. PROGRAMMING MODEL .. 7

2.2.1. About the K531 INS library ... 8
2.2.2. Differences with Pro-Active out-of-shelf products 8

2.3. VARIOUS HARDWARE .. 8
2.3.1. RS232 or USB serial line ... 8
2.3.2. Antennas with RS485 link ... 9
2.3.3. Antennas with Dataclock or Wiegand lines 9

3. THE RENESAS R8C/25 MCU ..10

3.1. SYSTEM MEMORY ... 10
3.1.1. How compiler maps each item... 10
3.1.2. Important note regarding stack... 10
3.1.3. Accessing the memory mapping .. 11
3.1.4. A few important hints ... 12

3.2. K531 IMPLEMENTATION SPECIFICS .. 13
3.2.1. Reserved peripherals .. 13
3.2.2. Clock frequency and main timer .. 13
3.2.3. Serial line... 13
3.2.4. RC531 chipset .. 14

4. THE HELLOWORLD PROJECT...15

4.1. CODE REVIEW ... 16
4.2. BUILDING THE PROJECT... 17
4.3. FLASHING THE DEVICE .. 19
4.4. TESTING OUR PROGRAM .. 21
4.5. WHAT’S NEXT ?... 22

5. CONTACTLESS OPERATION...23

5.1. ACTIVATION OF THE RC531... 23
5.2. LOOKING FOR A CARD ... 24

5.2.1. ISO/IEC 14443-A layer 3 activation... 24
5.2.2. ISO/IEC 14443-B layer 4 activation... 25

5.3. WORKED EXAMPLES.. 26
5.3.1. Basis.. 26
5.3.2. Type A anti-collision.. 27

6. WORKING WITH MIFARE CARDS..29

6.1. RECOGNIZING MIFARE CARDS... 29
6.2. READING A BLOCK.. 30
6.3. MIFARE ACCESS KEYS ... 30

6.3.1. Storing the keys in program.. 31
6.3.2. Using RC531’s secure EEPROM.. 31

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 3 / 60

6.4. WORKED EXAMPLE ... 33
6.5. GOING FURTHER.. 35

6.5.1. Writing data into the card ... 35
6.5.2. The Mifare Application Directory (MAD).. 37
6.5.3. Working with one sector at once.. 38

7. WORKING WITH T=CL CARDS ..39

7.1. ENTERING ISO/IEC 14443 LAYER 4 ... 39
7.1.1. Type A... 39
7.1.2. Type B... 39

7.2. EXCHANGING FRAMES WITH THE CARD .. 40
7.2.1. ISO/IEC 7816 commands and APDUs... 41
7.2.2. Other frame formats... 42
7.2.3. Closing communication correctly ... 42

7.3. DESFIRE EXAMPLE.. 43
7.4. JAYCOS EXAMPLE ... 45
7.5. GOING FURTHER.. 47

7.5.1. Reading interesting data ... 47
7.5.2. Trying to get secure… ... 47

8. OTHER FEATURES ..49

8.1. DRIVING LEDS ... 49
8.2. THE USER I/O PIN.. 49
8.3. THE MODE I/O PIN... 50
8.4. WORKING WITH TIMERS .. 50
8.5. DATACLOCK OUTPUT... 51
8.6. WIEGAND OUTPUT.. 53
8.7. STORING NON-VOLATILE DATA .. 55

8.7.1. In the RC531.. 55
8.7.2. In R8C-25’s data flash.. 55

9. IMPLEMENTING A “CONSOLE” ON THE SERIAL LINE56

10. OTHER SAMPLE PROJECTS IN THE SDK ..58

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 4 / 60

1. INTRODUCTION

1.1. PRODUCT BRIEF

Pro-Active K531 is an ISO/IEC 14443 coupler. As an OEM device, it provides an
easy-to-use versatile interface between a computer or a microcontroller, and contactless
cards or RFID tags.

Sometimes, it appears that embedding specific functions inside the K531 itself can
be a great feature for the integrator : it can totally remove the need for an external host
microcontroller, or at least allow to use a cheaper one –slower, smaller–, and it helps
achieving the fastest transaction speed by dramatically reducing the number of
exchanges between reader and host.

The SDK K531/INS is a set of source code and sample projects that make it easy
to develop virtually any contactless-related application for the K531.

1.2. ABOUT THIS MANUAL

This manual is the reference guide for developers working on the K531 and its
derivatives.

I This document refers to release 2R of the coupler (K531-2R).

Earlier releases are not compliant with the K531/INS SDK.

Some parts of this manual focus on operating the device together with the cards
that are supplied in the development kit :

• NXP Mifare Standard

• NXP Mifare UltraLite

• NXP Desfire

• INSEAL Jaycos.

Of course K531 is able to communicate with other kind of cards.

1.3. AUDIENCE

This developer’s guide is designed for use by application developers. It assumes
that the reader has expert knowledge of electronics and embedded software
development, using the C language.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 5 / 60

As the K531 module can virtually dialog with any ISO/IEC 14443 contactless card,
it is better to have a good understanding of this standard1.

More than that, working with a specific contactless card involves a complete
understanding of the card itself. Please read carefully the datasheet and operating
manual of the card(s) you plan to work with, to know clearly

• How the card must be operated at the contactless communication level (full
or partial 14443 compliance, type A or type B)

• How the card must be operated at the application level (proprietary
command set, ISO/IEC 7816-4 compliance, …).

1.4. SUPPORT AND UPDATES

Interesting related materials (datasheet, application notes, sample softwares…)
are available at Pro-Active’s web site : www.pro-active.fr .

Updated versions of this document and others will be posted on this web site as
soon as they are made available.

For technical support enquiries, please refer to Pro-Active support page, on the
web at address www.pro-active.fr/support .

1 International standard must be bought from ISO. Free drafts can be found at

www.14443.org .

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 6 / 60

2. THE K531 PRODUCT FAMILY

2.1. K531 PINOUT AND BASIC OPERATION

a. Pinout

www.pro-active.fr

ISO/IEC 14443
OEM MODULE

K531-2R

NC : 1
Signal : 2

Vcc : 3
Gnd : 4

NC : 5
Gnd : 6

 MfOut : 7
MfIn : 8
RFU : 9

/Flash :10

20 : Vcc
19 : Gnd
18 : Green LED
17 : Red LED
16 : Mode
15 : /Reset
14 : User
13 : NC
12 : TX
11 : RX

Module is powered by Vcc = 5V.

Connect antenna between pin “Signal” (2) and Gnd. Follow datasheets and
application notes for details.

Pin “/Reset” (15) must be set to Vcc (or left unconnected) for operation.

Pin “/Flash” (10) must be set to Vcc (or left unconnected) for standard operation.
Set “/Flash” to Gnd only when you want to download a new firmware into reader’s flash
memory (ROM).

b. Serial communication

Serial communications uses UART 1 of the MCU. Pin “TX” (12) is the output (MCU
to host) and pin “RX” (11) the input (host to MCU).

Both pins are 0-5V. An external line driver is required for RS-232 operation (or
RS-422 or RS-485).

c. I/Os

• Pin 17 is an output only. Default implementation is to connect it to a green
LED.

• Pin 18 is an output only. Default implementation is to connect it to a red
LED.

Don’t connect pin 17 & 18 directly to the LEDs, a LED driver is required (see
relevant application note).

• “User” (14) is either input or and output depending on software.

• “Mode” (16) is either input or and output depending on software.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 7 / 60

When using pin 14 or pin 16 as output, observe same precautions as for pins 17 &
18.

d. MfIn / MfOut

Those pins are directly connected to NXP RC531’ MfIn & MfOut pins. Refer to NXP
documentation for information.

2.2. PROGRAMMING MODEL

The diagram below depicts the K531 programming model.

You’ve complete control on the actual application, starting at function main
entrance (and typically never exiting !).

The underlying complexity of the NXP MfRC531 chipset and of the ISO/IEC 14443
standard is totally hidden by the K531 INS library. The hardware abstraction layer and
the standard C runtime library let you focus on the core of your project.

K531 hardware

14443 layer 4 (T=CL)
functions

MIFARE
functions

Hardware abstraction layer (HAL)

14443 layer 3 - A
functions

14443 layer 3 - B
functions

Philips’ MfRC531 basic function library

K
53

1
IN

S
 li

br
a

ry

Your application here !

C
 r

un
tim

e
lib

ra
ry

Renesas
R8C/25

MCU

Philips
MfRC531

Serial port

2 LEDs out

USER I/O

MODE I/O

Antenna

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 8 / 60

2.2.1. About the K531 INS library

The K531 INS library is a complete set of function that gives you complete and
easy access to all the feature of the K531 and its ISO/IEC 14443 contactless interface.

Thanks on an adaptive hardware abstraction layer, all Pro-Active’s contactless
products are build on the same core library, from inexpensive K531 OEM
modules, to mobile SpringProx couplers for PocketPC and desktop CSB products.

The K531 INS library is the K531-2R build of this core library.

Once your application has been written with this SDK, it can virtually be ported
to any other Pro-Active device. Don’t hesitate to contact us if you think you can
embed your application in our others products.

The documentation of the library is located in the docs/k531_ins directory of
this SDK, listing all function prototypes and available features.

C
This document provides a few useful examples but doesn’t cover all the functions.

Only the docs/k531_ins documentation is the reference for function prototypes,
return values and potential side-effects.

2.2.2. Differences with Pro-Active out-of-shelf products

Pro-Active contactless products (K531, CSB, SpringProx…) are also built on top of
the same library, as your project will.

The difference is lying in the « your application here ! » panel, where Pro-Active
puts its host communication layers (modified OSI 3994, fast binary, ASCII) and its
console processor.

Due to the limited size of memory available in K531, we can't embed both « your
application » and our host communication layer, that make our devices work with our
host-based SpringProx API.

2.3. VARIOUS HARDWARE

The K531 module can be used on different hardware configurations. The common
part is the contactless antenna, which must be designed with care for proper operation.

2.3.1. RS232 or USB serial line

In this typical configuration, the RX/TX pins are bound to an RS232 line driver
(MAX232 or alike), or to an USB ßà serial bridge (FTDI FD232 or alike).

This is for instance the configuration provided by K531-232 board (OEM antenna
with RS232 link), IWM-K531-232 (wall-mount reader with 232 link), IWM-K531-USB
(wall-mount reader with USB link).

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 9 / 60

2.3.2. Antennas with RS485 link

In this typical configuration, the RX/TX pins are bound to an RS485 line driver.
Transmit mode is driven by pin “Mode”.

This is for instance the configuration provided by K531-485 board (OEM antenna
with RS485 link) and IWM-K531-485 (wall-mount reader with 485 link).

2.3.3. Antennas with Dataclock or Wiegand lines

In this typical configuration, the UART is disabled. RX/TX pins outputs only, and
deliver either an ISO2 (data+clock) or a Wiegand (D0+D1) signal.

IWM-K531-485 motherboard can be configured to provide this feature.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 10 / 60

3. THE RENESAS R8C/25 MCU

The core of the K531 is the Renesas R8C/25 MCU.

Please download the R8C/25 hardware manual from Renesas’ web site :

• http://www.renesas.com à « Global site »,

• « M32C/M16C/R8C » à « M16C » à « R8C/Tiny » à « R8C/25 group ».

• Choose the « R8C/24, R8C/25 group hardware manual » in the
documentation page.

This is the current URL of the manual :

http://documentation.renesas.com/eng/products/mpumcu/rej09b0244_r8c2425hm.pdf

Be careful that it may be moved to another URL at any time.

3.1. SYSTEM MEMORY

Reference Renesas
R8C/25 MCU

Program Flash
(“ROM”)

Data Flash RAM

K531-2R R5F21256 32kB 2kB 2kB

3.1.1. How compiler maps each item

• Program code goes into Program Flash (sections : program, switch table,
interrupts),

• Constants (C “const” keyword) go into Program Flash (sections rom_xx) ,

• Un-initialised global or static variables go into RAM (sections bss_xx ; they are
implicitly initialised at 0 on start-up),

• Initialised global or static variables go both into RAM –where they are used–
and into Program Flash –where their initial value is stored– (sections
data_xx),

• Automatic variables are allocated on the stack. Their initial value –if some–
is embedded in the program itself.

The Data Flash provides a persistent storage (“FEED”), see chapter 8.

3.1.2. Important note regarding stack

The R8C/25 has two different stack pointers :

• The USER stack pointer is used by the application,

• The SYSTEM stack pointer is used by the interrupt handlers.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 11 / 60

When your code calls a function from the K531 INS library or from the C-
runtime library, it will use either the USER stack or the SYSTEM stack, depending on the
context of the caller.

All the examples provided in this SDK are configured as follow :

• 768B of USER stack

• 128B of SYSTEM stack.

I High-level K531 INS library functions need at least 512B of stack memory to
accommodate nested calls. Never call a K531 INS library function from an
interrupt handler since the SYSTEM stack is far too small.

C
Avoid recursive functions.

Forbid oversized automatic variables.

Use the static keyword to put local variables outside the stack whenever it is
possible.

You can change the stack settings in HEW :

• « Build » menu,

• « Renesas M16C Standard Toolchain » menu item,

• « C » section,

• In the « Options C » text box, edit defines __STACKSIZE__ (USER stack)
and __ISTACKSIZE__ (SYSTEM stack).

M Setting __STACKSIZE__ to a value less than 728B (0x300) or __ISTACKSIZE__
to a value less than 128B (0x80) is not recommended.

3.1.3. Accessing the memory mapping

If you want to verify or modify the memory mapping :

• « Build » menu,

• « Renesas M16C Standard Toolchain » menu item,

• « Link » section,

• « Section Order » category.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 12 / 60

3.1.4. A few important hints

• The memory mapping used in this SDK doesn’t reserve memory for the
heap (C dynamic allocation features).

M Never call a function that performs dynamic allocation (malloc, strdup, …).

• Don’t waste RAM when ROM can be used.

C Use the const keyword to put the « non variable variables » into ROM instead of
RAM whenever it is possible.

• Don’t waste RAM with two static or global variables that are never used in
the same time.

C
Suppose function_A works on big_var_A, and function_B on big_var_B, where
big_var_A and big_var_B are 1kB buffer (too big for the stack, of course).

If you can make sure that function_A never calls function_B, and function_B
never calls function_A, use an union to store the two buffers at the same place in
RAM.

• Some functions from the C runtime library are really huge in ROM.

C String formatting functions (sprintf and alike) have a really high memory
footprint. Whenever possible, try to rewrite the features you need cleverly,
instead of calling such functions.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 13 / 60

3.2. K531 IMPLEMENTATION SPECIFICS

3.2.1. Reserved peripherals

The K531 hardware gives strong limitations to the R8C/25 peripherals of the
R8C/25 left available. Moreover, the K531 INS library uses most of the peripherals
through its Hardware Abstraction Layer ; the application should always call the library
functions instead of trying to gain direct access to the hardware.

Peripheral Owner Remarks
Timer RA LIB Use timeout_ functions.
Timer RB Never activate TRB0
Timer RD Never activate TRDIO
Timer RE Never activate TRE0
Port P0
A/D converter

Port P1
UART 0

HAL

RC531 address bus

Port P2
Timer RD I/Os

HAL

RC531 data bus

Port P3
TRA0 & TRB0
I2C/SPI

HAL

RC531 control

Port P4
INT0 & INT1

HAL
HAL

Clock input
RC531 control

Port P6
UART 1
TRE0

HAL & LIB
LIB

I/O pins & RC531 control
Use serial_1_ and print_ functions

R8C/25 peripherals – Greyed items are not available to the application developer

3.2.2. Clock frequency and main timer

In K531 the R8C/25 runs exactly at 13,56MHz (same frequency as RF field for
contactless communication).

Timer RA is reserved by the library and provides a base time of 1kHz (1ms
period). The timer_ticks global variable (DWORD) is set to 0 on start-up, and increased
by 1 every millisecond. It is available through timout_init, timeout_expired and
timeout_kill functions or macros.

3.2.3. Serial line

UART 1 peripheral is bound to K531’s “RX” and “TX” pins. The serial_1_init
function configures the UART for 8 data bits, 1 stop bit, no parity, no flow control
operation. The baudrate is specified in function call. Available baudrate are :

• 1200bps,

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 14 / 60

• 4800bps,

• 9600bps,

• 19200bps,

• 38400bps,

• 57600bps,

• 115200bps2.

The K531 INS library doesn’t allow any other baudrate.

3.2.4. RC531 chipset

In K531, R8C/25 MCU communicates with NXP’ MfRC531 contactless chipset
through a high-speed parallel link. This allows fast communication in both directions.
Anyway, when working with high-speed contactless cards (848kbps T=CL
communication), the R8C/25 may be unable to empty or fill-in the MfRC531 FIFO buffer
at desired speed. Please contact us if you need help on this subject.

2 To achieve this baudrate, an external crystal is required. It is available on K531 devices,

but for example SpringProx PocketPC products are not equipped with it and will hang if the
application tries to initialize their UART at this speed.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 15 / 60

4. THE HELLOWORLD PROJECT

• Launch Renesas HEW 4, and open workspace

C:\Renesas\pro-active_k531_ins_r8c-25\projects\Projects.hws

• Select the HelloWorld project in HEW projects explorer. Right-click, and
click Set as current project in the popup menu to start working on this
project.

• Explore project HelloWorld, and open the HelloWorld.c source file.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 16 / 60

4.1. CODE REVIEW

This is the source code of the HelloWorld’s main, without the comments :

void main(void)
{
 sprox_hal_init();
 serial_1_init(38400);
 set_leds(LED_HEART, LED_SLOW, LED_FAST);
 print_s("Hello, world !\r\n");
 print_s("K531 INS SDK - " __DATE__ " " __TIME__ "\r\n");
 for (;;)
 watchdog_update();
}

• At first we call sprox_hal_init to configure the Hardware Abstraction
Layer.

• We initialise the serial line at 38400bps.

• The print_s function sends a string on the serial line.

I The C runtime library provides standard printf function, but the stdin, stdout
and stderr streams are not bound to the serial line. In other words, you can call
printf, but it will do nothing at all (but waste a lot of ROM).

• The for(;;) statement is an infinite loop, our application will do nothing,
and do it forever (at least, until we remove power or the device resets3).

C
On start-up, the K531 INS library activates the hardware watchdog of the MCU.

The overflow period of the watchdog is about 310ms on K531 (but can be as
short as 150ms on other devices of the family).

Call the watchdog_update in main loop to confirm everything is OK, and at least
every 50ms if you’re ever caught in a function that may last longer.

3 The K531 INS library systematically resets when the tick counter overflows. That is every

0xFFFFFFFF millisecond. If you develop a product that will be always ON –such as an access
control reader- it will reset every 49,71 days. Since the typical reset sequence is shorter than
100ms, the reset will remain virtually undetectable by the end-user, until your application reports
loudly.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 17 / 60

Now consider the second functions in this file :

void serial_1_recv_callback(BYTE r)
{
 print_b(r);
}

This is the callback function that will be called by the K531 INS library each time
a character is received on the serial line.

In this sample we simply call print_b to echo back the received character.

N Keep in mind that serial_1_recv_callback is an interrupt handler. This has 2
implications :

• SYSTEM stack is selected, never call any stack consuming function from
this call-back, it will overflow,

• Until you’ve returned from this callback, the serial receive interrupt is
inhibited. This means that if you spend too much time processing one
byte, you’ll lose the next byte (overrun error).

Chapter 9 gives an example of how-to implement a “console” on the serial line
safely.

There’s a second interrupt handler (serial_1_error_callback) that is called
whenever a communication error is reported by the UART. The overrun flag tells you that
the error is due to serial_1_recv_callback taking to much time.

On communication error, we reset the UART (call serial_1_init again).

4.2. BUILDING THE PROJECT

• In main menu, click Build à Build All.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 18 / 60

Here’s the build output :

Building All - HelloWorld - Release

Phase M16C C Compiler starting
C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\HelloWorld.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\HelloWorld.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\vectors.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\vectors.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\lowinit.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\lowinit.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\corks.c
C:\Renesas\Pro-Active_K531_INS_R8C-25\Sources\corks.c

Phase M16C C Compiler finished

Phase M16C Linker starting
Linkage Editor (ln30) for R8C/Tiny,M16C Series Version 5.12.02.000
Copyright(C) 2005. Renesas Technology Corp.
and Renesas Solutions Corp., All Rights Reserved.
now processing pass 1
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\corks.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\HelloWorld.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\lowinit.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\vectors.r30"
processing "Libraries"
processing "Libraries"

now processing pass 2
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\corks.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\HelloWorld.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\lowinit.r30"
processing "C:\Renesas\Pro-Active_K531_INS_R8C-25\Projects\HelloWorld\Release\vectors.r30"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_ios_ins.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_con_ins.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_tmr_ins.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_hal_r8c-25_ins.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_drv.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_cfg.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_pcd.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_mio.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (serial_1.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (timer_ra.r30)"
processing "C:\Renesas\pro-active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (watchdog.r30)"
processing "C:\Renesas\NC30WA\V540R00\lib30\r8clib.lib (_i4divu.r30)"
processing "C:\Renesas\NC30WA\V540R00\lib30\r8clib.lib (_i4modu.r30)"
processing "C:\Renesas\NC30WA\V540R00\lib30\r8clib.lib (_i4mulu.r30)"
processing "C:\Renesas\NC30WA\V540R00\lib30\r8clib.lib (nmemset.r30)"
Warning (ln30): License has expired, code limited to 64K (10000H) Byte(s)
DATA 0001266(004F2H) Byte(s)
ROMDATA 0000464(001D0H) Byte(s)
CODE 0006489(01959H) Byte(s)
The value of option function select register is FFH
Phase M16C Linker finished

Phase M16C Load Module Converter starting
Load Module Converter (lmc30) for R8C/Tiny,M16C/60 Series Version
4.01.01.000
Copyright(C) 2005. Renesas Technology Corp.
and Renesas Solutions Corp., All Rights Reserved.
--
Phase M16C Load Module Converter finished

Build Finished
0 Errors, 1 Warning

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 19 / 60

• Verify that build has finished with 0 error, and 0 or 1 warning4.

4.3. FLASHING THE DEVICE

• Launch Renesas FDT 3, and open workspace

C:\Renesas\pro-active_k531_ins_r8c-25\flash\Projects.aws

• In main menu, click Device à Configure flash project.

• Go to the Communications tab in project’s configuration.

• Check that the selected serial port is the one your device is connected to. If
not, double-click the Port line, and select appropriate port.

• Put your device in flash mode (refer to product manual for details).

• Select HelloWorld.mot in Projects à S-Record Files.

• In main menu, click, Device à Connect to Device.

4 The warning comes after 30 days when code size limit is enabled. This is not an issue

since we work with a 32k MCU.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 20 / 60

• Verify than connection is successful :

Connecting to device 'WS_R5F21256' on 'COM2'
Configuration:
'BOOT Mode' connection - using emulated interface
Opening port 'COM2' ...
Loading Comms DLL
Loaded Comms DLL
Initiating BOOT SCI sequence
Attempting 9600
Changing baud rate to 38400 bps
ID code check successful
Connection complete
All blocks marked as unknown written status

• Right-click HelloWorld.mot again, and click Download file in the popup.

• Verify that download is successful :

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 21 / 60

Erasing 2 blocks from device
Erased block EB1 (0x00008000 - 0x0000BFFF)
Erased block EB0 (0x0000C000 - 0x0000FFFF)
Erase complete

Processing file :"C:\Renesas\Pro-Active_K531_INS_R8C-25\Output\HelloWorld.mot"
[Data Flash] - No Data Loaded
Operation on User Flash
Writing image to device... [0x00008000 - 0x000099FF]
Writing image to device... [0x0000FE00 - 0x0000FFFF]
Data programmed at the following positions:
 0x00008000 - 0x000099FF Length : 0x00001A00
 0x0000FE00 - 0x0000FFFF Length : 0x00000200
7 K programmed in 3 seconds
Image successfully written to device

• In main menu, click, Device à Disconnect.

N Renesas R8C-25 flash has a write endurance of 100 cycles.

This means that you can’t reprogram your K531 more than 100 times.

4.4. TESTING OUR PROGRAM

• Launch HyperTerminal or any other terminal emulation software.

• Create a new connection to the serial communication port your device is
connected to. Communication parameters are :

o 38400 bps

o 8 data bits, 1 stop bit

o No parity, no flow control

• Put the device back in normal operation mode.

• Reset the device. The “Hello, world !” string will appear :

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 22 / 60

• Check that device echoes back the characters entered.

4.5. WHAT ’S NEXT ?

You can modify this project to test various communication speeds. Note that any
on communication error, the UART of the device is configured again ; don’t forget to
change baudrate in function serial_1_error_callback and not only in function
main.

You can also try different LEDs commands, and also change LEDs behaviour
dynamically when receiving specific characters.

Last but not least, see what happens when replacing the watchdog_update()
statement in function main’s for (;;) loop by a no_operation() statement (calls
NOP, i.e. does really nothing).

I All the examples written in the next chapters are based of this HelloWorld
example.

You can find each source code in the HelloWorld folder, with the name

HelloWorld_<Chapter>_<Paragraph>.c

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 23 / 60

5. CONTACTLESS OPERATION

5.1. ACTIVATION OF THE RC531

Currently HelloWorld project only configure the MCU. First step is to attach and
configure the NXP RC531 chipset, for actual contactless operation.

Just after sprox_hal_init(), call rc531_connect() to do so.

a. Updated code

Here’s our HelloWorld_5_1.c . We’ve added a few lines to test RC531 :

void main(void)
{
 sprox_hal_init();
 rc531_connect();
 serial_1_init(38400);

 (...)

 /* Get and print RC531 info */
 /* ------------------------ */
 {
 BYTE buffer[5];
 SBYTE rc;

 print_s("RC531");
 rc = PcdGetPid(buffer); /* Retrieve product identifier */
 if (rc != MI_OK) print_d(rc, 0); /* Error */
 else
 {
 /* Display product identifier, 5 bytes */
 print_s(" PID="); print_h(buffer, 5, FALSE);
 }
 rc = PcdGetSnr(buffer); /* Retrieve serial number */
 if (rc != MI_OK) print_d(rc, 0); /* Error */
 else
 {
 /* Display serial number, 4 bytes */
 print_s(" SNR="); print_h(buffer, 4, FALSE);
 }
 print_s(NULL); /* Same as print_s("\r\n"); */
 }

 for (;;)
 (...)

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 24 / 60

b. Test program

Build updated program, disconnect terminal session, and flash the program.
Connect again with the terminal emulator, and see new output :

RC531 PID=30FFFF0F04 SNR=17199747

5.2. LOOKING FOR A CARD

Now before working with a contactless card, we must find it the RF field. As the
card doesn’t say “Hello, I’m new here” when it arrives, reader must perform an active
card detection, by sending repeated lookup frames. This continuous polling is the basis
of a contactless reader.

5.2.1. ISO/IEC 14443-A layer 3 activation

There are two functions to lookup for an ISO/IEC 14443-A card :

• IsoA_ActivateIdle uses WUPA lookup frames, meaning that only “new”
cards will answer.

• IsoA_ActivateAny uses REQA lookup frames, meaning that the cards that
have previously been worked with and halted by the reader will answer
again.

Both functions return MI_OK on success, and MI_NOTAGERR when no 14443-A
card has been found in the RF field.

When result is MI_OK, the identification of the card is found in global variable
iso3a_tag, which is an ISO3A_TAG_ST structure.

a. Explanation of the ISO3A_TAG_ST structure.

Field Size (bytes) Content
atq 2 Card’s Answer To Query. This field provides information on

the type of card we’ve found.5
uid 4, 7 or 12 Card’s Unique IDentifier (UID).

Size=4 for cards with a single -sized UID (Mifare 1k & 4k)
Size=7 for cards with a double -sized UID (Mifare UltraLight & Desfire)
Size=12 for cards with a trip le-sized UID

uidlen 1 This is actual size of UID (4, 7 or 12)
sak 1 Card’s Select AKnowledge. This field tells us whether the

card supports 14443 layer 4 (“T=CL”) operation or not.

5 See NXP’s application note “Mifare Interface Platform Type Identification Procedure”

At the time of writing, this document can be found online at
http://www.nxp.com/products/identification/mifare/index.html#rel

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 25 / 60

5.2.2. ISO/IEC 14443-B layer 4 activation

There are two functions to lookup for an ISO/IEC 14443-B card :

• IsoB_ActivateIdle uses WUPB lookup frames, meaning that only “new”
cards will answer.

• IsoB_ActivateAny uses REQB lookup frames, meaning that the cards that
have previously been worked with and halted by the reader will answer
again.

Both functions take on parameter named afi.

Both functions return MI_OK on success, and MI_NOTAGERR when no 14443-B
card has been found in the RF field.

When result is MI_OK, the identification of the card is found in global variable
iso3b_tag, which is an ISO3B_TAG_ST structure.

a. Explanation of the afi parameter

Since 14443-B defines a really poor anti-collision scheme compared to 14443-A,
when more than one card may be present in the RF field, it is easier to discover only the
card we want to work with than trying to discover one after the other until we find the
one we’ve been expecting.

The AFI (Application Family Identifier) represents the type of application targeted
by the reader. Only cards (and hopefully only card) with application(s) of the type
indicated by the AFI are allowed to answer to REQB or WUPB. The list of AFIs a specific
card will answer to, depends on the list of applications installed in the card.

If you want to lookup for any kind of 14443-B card, whatever the application they
provide, set parameter afi = 0.

b. Explanation of the ISO3B_TAG_ST structure.

Field Size (bytes) Content
afi 1 Reminder of the AFI the card has answered to
atq 11 Card’s Answer To Query.

4-first bytes of ATQ are named “Pseudo-Unique PICC Identifier”
(PUPI). They can either be a 4-bytes fixed serial number, or a
4-byte random number changing on each activation.
For explanation of the 7-next bytes, please refer to ISO/IEC
14443-3.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 26 / 60

5.3. WORKED EXAMPLES

5.3.1. Basis

Here’s our updated source code

HelloWorld_5_3_1.c

(...)

 for (;;)
 {
 SBYTE rc;

 /* Feed the watchdog */
 watchdog_update();

 /* 14443-A lookup */
 rc = IsoA_ActivateAny();
 if (rc == MI_OK)
 {
 print_s("Found 14443-A card :\r\n");
 print_s("ATQ=");
 print_h(iso3a_tag.atq, 2, FALSE);
 print_s(" UID=");
 print_h(iso3a_tag.uid, iso3a_tag.uidlen, FALSE);
 print_s(" SAK=");
 print_h(iso3a_tag.sak, 1, FALSE);
 print_s(NULL);
 }
 /* We must wait at least 5ms between each type */
 sleep_ms(5);

 /* 14443-B lookup, AFI = 0 (any application) */
 rc = IsoB_ActivateAny(0x00);
 if (rc == MI_OK)
 {
 print_s("Found 14443-B card :\r\n");
 print_s("ATQ=");
 print_h(iso3b_tag.atq, 11, FALSE);
 print_s(NULL);
 }
 /* We must wait at least 5ms between each type */
 sleep_ms(5);
 }

Once a card is found (either A or B), we display its information.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 27 / 60

Note that we add a 5ms delays between type A and type B lookups. This is needed
because ISO/IEC 14443 allows type B cards to reset after receiving a type A modulation,
and type A cards to reset after receiving a type A modulation6. The standard allows 5ms
for card being ready after a reset7.

Here’s the output when a type A card (NXP Desfire) is put in the field :

Here’s the output when a type B card (Inseal Jaycos) is put in the field :

Observe that in both cases the information is repeated until card is removed from
the field.

5.3.2. Type A anti-collision

Now we’ll use the type A anti-collision feature, halting the card after having found
it, and using REQA lookup instead of WUPA.

We’ll try to do the same for type B, and check the differences.

6 First case is really frequent, where the second has never been observed…

7 Note that some “old” type B cards may require more than 5ms to wake-up after a field

interruption. You’ll have to adapt the timings of your reader to the requirements or the specific
cards you’re working with.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 28 / 60

Here’s the new source code for type A :

 /* 14443-A lookup, REQA instead of WUPA */
 rc = IsoA_ActivateIdle();
 if (rc == MI_OK)
 {
 IsoA_Halt(); /* Halt the card right now */
 print_s("Found 14443-A card :\r\n");

 (...)

Here’s the new source code for type B :

 /* 14443-B lookup, REQB instead of WUPB */
 rc = IsoB_ActivateIdle(0x00);
 if (rc == MI_OK)
 {
 IsoB_Halt(iso3b_tag.atq); /* Halt the card right now */
 print_s("Found 14443-B card :\r\n");

 (...)

Complete code is in HelloWorld_5_3_2.c

I Type B halt command is “addressed” to one specific card, so the PUPI (4-first
bytes of ATQ) must be provided to IsoB_Halt.

Type A halt command is “broadcasted”, but only the currently selected card will
accept the command, that’s why IsoA_Halt takes no parameter.

Now place a type A card in the field. The information is displayed once. Card must
be removed and put back again to have its information displayed. You can also put 2 or
3 type A cards in the field in the same time, and see that type A anti-collision allows
selecting one after the other.

Now place a type B card in the field. In most cases you’ll see no difference with
last version of the program, because the type B card resets (and forgets its “halted”
state) during the type A modulation.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 29 / 60

6. WORKING WITH MIFARE CARDS

This chapter deals with Mifare “Standard” (or Mifare “Classic”) cards. The
examples focus on Mifare 1k, but can be extended very easily to Mifare 4k8.

6.1. RECOGNIZING MIFARE CARDS

Mifare cards can be recognized by their ATQ9 :

iso3atag_atq[0] iso3atag_atq[1] Card
0x04 0x00 Mifare Standard 1k
0x02 0x00 Mifare Standard 4k

Here’s a summary of the features :

a. Mifare 1k

• 64 blocks of 16 bytes each, blocks 0 is read-only.

• Card is divided into 16 sectors of 4 blocks each.

• Last block of each sector (“sector’s trailer”) stores the two secret keys (key
A & key B) that protect this sector.

b. Mifare 4k

• 256 blocks of 16 bytes each, blocks 0 is read-only.

• Card is divided into 32 sectors of 4 blocks each (sectors 0 to 31), followed
by 16 sectors of 16 blocks (sectors 32 to 39).

• Last block of each sector (“sector’s trailer”) stores the two secret keys (key
A & key B) that protect this sector.

8 The memory mapping under 2k is exactly the same, and after 2k only the number of

blocs in a sector is different.
9 See NXP’s application note “Mifare Interface Platform Type Identification Procedure”

At the time of writing, this document can be found online at
http://www.nxp.com/products/identification/mifare/index.html#rel

This documents also specifies SAK = 0x08 for Mifare 1k and SAK = 0x18 for Mifare 4k.
This is true for “real” NXP Mifare cards, but you can find a different SAK when using Mifare cards
from other manufacturer (Infineon for instance) or when the card is a micro-controller smartcard,
with a Mifare emulation applet (Mifare ProX cards for instance are often programmed with a
Mifare Standard applet).

Note that this document –and a lot of documents written by Philips/NXP– considers ATQ as
a single 16-bit value (a WORD) where the reader receives 2 8-bit values (2 BYTEs). The Mifare
card is “little endian”, so LSB maps to atq[0] and MSB to atq[1].

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 30 / 60

6.2. READING A BLOCK

K531 INS library provides 2 functions to read one block from a Mifare card :

• MifReadWriteBlock(BOOL w, BYTE block, BYTE data[16],
 BYTE key_value[6])

• MifReadWriteBlockK(BOOL w, BYTE block, BYTE data[16],
 BYTE key_ident)

In both functions the w parameter must be set to FALSE10. The block parameter
is the address of the block to be read (0 to 63 for Mifare 1k, 0 to 255 for Mifare 4k) ; on
success (function returning MI_OK) the data buffer will receive the actual data read
from the card.

Thanks to Mifare security scheme, reading a block is only possible after a
successful authentication, and communication is ciphered. Authentication is performed
over the next security block (or sector’s trailer) to be found after the specified block,
and using a “secret” key.

Next paragraph provides details on Mifare keys.

I Type B “halt” command (HLTB) is “addressed” to one specific card, so the PUPI
(4-first bytes of ATQ) must be provided to IsoB_Halt.

Type A “halt” command (HLTA) is “broadcasted”, but only the currently selected
card will accept the command, that’s why IsoB_Halt takes no parameter.

6.3. MIFARE ACCESS KEYS

Two keys protect each sector in a card :

• Key A is commonly used for read-only access,

• Key B is commonly used for read & write access.

Each key is a 6-byte value (48 bits)11.

When reader wants to read one block, it must know either key A or key B of the
sector this block belongs to.

10 Set it to TRUE if you want to write the block instead of reading it.

11 Although NXP documentation tells that Mifare is a “secure” contactless card, 48-bit keys
are nowadays considered as really weak compared to 112 or 128-bit keys that are commonly
used in 3-DES or AES operation. More than that, the CRYPTO1 security scheme used in Mifare
authentication and secure communication is a proprietary algorithm, and nobody really knows
how secure it really is. Anyway, in most “real-life” cases (access control, identification, …) where
price of the solution is an important concern, the security level of Mifare cards & readers can be
considered as really good compared to other solutions in the same range of prices (125kHz tags,
13.56MHz memory cards with no security at all…)

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 31 / 60

6.3.1. Storing the keys in program

The easiest solution is to store the key in program, and to provide it to
MifReadBlock function :

static const BYTE my_key[6] = {0x12,0x34,0x56,0x78,0x9A,0xBC};

(...)

SBYTE rc = MifWriteReadBlock(FALSE, 4, data, my_key);
if (rc == MI_OK)
{
 /* Block 4 has been read !!! */
 print_h(data, 16, FALSE);

 (...)

When called with a non-NULL key_value parameter, function
MifReadWriteBlock tries the specified key as a key A, and only on failure as a key B.

I It is technically possible to read sector’s trailer (blocks 3, 7, …), but this is not
really interesting since access keys are “masked” by the card (read as 0x00 …
whatever their value).

6.3.2. Using RC531’s secure EEPROM

Thankfully, the RC531 chip has an internal secure non-volatile memory, where
keys can be stored. The memory is said “secure” because one can write the keys in it,
but never read them back (so the secret key is really secret).

Using the RC531 to store the key(s) has two interests :

• A stolen reader is no more a security concern ;

• The developer can test the application without any knowledge of the key.
This is really interesting when the application is developed by a third-party ;
actual Mifare key will be loaded only at deployment time, and will remains
unknown from the third-party.

The counterpart is that one need to implement a mean of loading the keys into the
RC53112, either from serial line or through a configuration card13.

12 Having the embedded software loading the key at first boot is just kidding… Key is still

to be found in source code and in binary dump…
13 Well… Now you must find a way of securing the configuration cards, because they hold

the key and because a forged configuration card will make your readers unusable…

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 32 / 60

a. Without selection

Once the key(s) are loaded into RC531’s secure EEPROM, reading is possible
without specifying the key :

(...)

/* Note the NULL key : */
SBYTE rc = MifWriteReadBlock(FALSE, 4, data, NULL);
if (rc == MI_OK)
{
 /* Block 4 has been read !!! */
 print_h(data, 16, FALSE);

 (...)

When called with a NULL key_value parameter, function MifReadWriteBlock
will execute the following procedure :

• Tries sequentially all A keys from RC531’s EEPROM, until one matches,

• If read all A keys have failed, tries sequentially all B keys, until one
matches.

This is interesting for developer because it is easy to implement and because he
doesn’t need to know at design time which key index will actually be used, but leads to
two issues :

• Since the RC531 has 16 A keys and 16 B keys, the complete procedure can
take “a lot of time” before returning (namely 400ms if matching key is B
15).

• If read is successful, developer knows that the authentication has been
successfully passed, but he doesn’t know which key has been used. This is a
potential security issue since a card may be read with a different key than
the one specified.

b. With forced key selection

Using the MifReadWriteBlockK function, developer can specify which key index
he wants to use for each particular block, thus knowing for sure the sector has been
formatted with the expected key.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 33 / 60

(...)

SBYTE rc = MifReadWriteBlockK(FALSE, 25, data,
 MIF_E2_KEY|MIF_KEY_A|0x07);
if (rc == MI_OK)
{
 /* Block 25 has been read with key A 7 from EEPROM */
 print_h(data, 16, FALSE);

 (...)

The key_ident parameter is a bit OR of :

• Constant MIF_E2_KEY to select RC531’s EEPROM,

• Type of key is either MIF_KEY_A or MIF_KEY_B,

• Key index, from 0 to 15 (0x00 to 0x0F).

6.4. WORKED EXAMPLE

This example reads (and displays) content of block 25 with any of the EEPROM
keys (no selection).

HelloWorld_6_4.c

a. Pre-loading the keys

We want to read the Mifare cards provided with the SDK. The card comes from
manufacturer in a “transport” state that must be documented by the manufacturer. We
assume they are in one of those two states :

• NXP configuration : key A is { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } for every
sector,

• Infineon configuration : key A is { 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5 } for
every sector.

So our program has to preload both keys to RC531’s EEPROM (remember, this is
not a good idea, actual keys must be loaded on-the-field over the serial line or through a
configuration card). This is done once at the beginning.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 34 / 60

static const BYTE key_FF[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
static const BYTE key_Ax[6] = {0xA0,0xA1,0xA2,0xA3,0xA4,0xA5};

(...)

/* Store key_FF as key A, index 0 */
Mf500PcdLoadKeyE2(PICC_AUTHENT1A, 0, key_FF);

/* Store key_Ax as key A, index 1 */
Mf500PcdLoadKeyE2(PICC_AUTHENT1A, 1, key_Ax);

b. Updated 14443-A lookup code

 rc = IsoA_ActivateIdle();
 if (rc == MI_OK)
 {
 print_s("Found 14443-A card :\r\n");
 print_s("ATQ=");
 print_h(iso3a_tag.atq, 2, FALSE);
 print_s(" UID=");
 print_h(iso3a_tag.uid, iso3a_tag.uidlen, FALSE);
 print_s(" SAK=");
 print_h(iso3a_tag.sak, 1, FALSE);
 print_s(NULL);

 /* Is this a Mifare card ?*/
 if ((iso3a_tag.atq[1] == 0x00)
 && ((iso3a_tag.atq[0] == 0x02)
 || (iso3a_tag.atq[0] == 0x04)))
 {
 BYTE data[16];

 /* Yes ! */
 if (iso3a_tag.atq[0] == 0x04) print_s("Mifare 1k\r\n");
 if (iso3a_tag.atq[0] == 0x02) print_s("Mifare 4k\r\n");

 /* Read block 4 with any of the EEPROM keys */
 rc = MifReadWriteBlock(FALSE, 4, data, NULL);
 if (rc == MI_OK)
 {
 print_h(data, 16, FALSE);
 print_s(NULL);
 }
 }
 /* Halt the card only after Mifare processing */
 IsoA_Halt();
 }

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 35 / 60

c. Output

Content of block 4 is displayed (out-of-factory cards come with all data set to
0x00, or sometimes with all data set to 0xFF) :

6.5. GOING FURTHER

6.5.1. Writing data into the card

M Never write any sector’s trailer (blocks 3, 7, …) as you will overwrite sector’s
access keys and access conditions with your data. Setting invalid access
conditions or forgetting the access keys permanently prevent any access to the
sector !

In this example we read blocks 4 and 5, display both of them, and rewrite block 5
after altering its content. We need to preload the right B keys into RC531’s EEPROM if
we want the operation to succeed.

HelloWorld_6_5_1.c

a. Preloading the keys

static const BYTE key_Bx[6] = {0xB0,0xB1,0xB2,0xB3,0xB4,0xB5};

(...)

/* Store key_FF as key B, index 0 */
Mf500PcdLoadKeyE2(PICC_AUTHENT1B, 0, key_FF);

/* Store key_Bx as key B, index 1 */
Mf500PcdLoadKeyE2(PICC_AUTHENT1B, 1, key_Bx);

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 36 / 60

b. Updated Mifare lookup code

 rc = IsoA_ActivateIdle();
 if (rc == MI_OK)
 {
 (...)

 /* Is this a Mifare card ?*/
 if ((iso3a_tag.atq[1] == 0x00)
 && ((iso3a_tag.atq[0] == 0x02)
 || (iso3a_tag.atq[0] == 0x04)))
 {
 (...)

 /* Read and display block 4 */
 rc = MifReadWriteBlock(FALSE, 4, data, NULL);
 (...)

 /* Read and display block 5 */
 rc = MifReadWriteBlock(FALSE, 4, data, NULL);
 (...)

 /* Do some changes in block 5 */
 data[0]++; data[15]++; data[1]--; data[14]--;

 /* Write back block 5 with any of the EEPROM keys */
 rc = MifReadWriteBlock(TRUE, 5, data, NULL);
 if (rc != MI_OK)
 print_s("Failed to rewrite block 5");
 }
 /* Halt the card only after Mifare processing */
 IsoA_Halt();
 }

c. Output

Content of block 5 is now displayed after content of block 4.

Note that content of block 5 is different every time we put the card on the
antenna.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 37 / 60

6.5.2. The Mifare Application Directory (MAD)

Up to now, we’ve considered that data are always located at the same place in the
card (static mapping to a defined block). This is all right in most situations, but
sometimes we have to “share” the card along different kind of readers and applications,
with flexibility and expandability for adding data in the future.

The Mifare Application Directory (MAD) concept defines how a dynamic card
mapping can be implemented, using sector 0 (blocks 1 and 2) as a “directory” telling the
reader where each data is located in the card.

For more information, read NXP’s document “Mifare Application Directory”14 or
review case studies at www.mifare.net .

14 At the time of writing, this document can be found online at

http://www.nxp.com/products/identification/mifare/index.html#rel

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 38 / 60

6.5.3. Working with one sector at once

Block read (and write) functions work with 16 bytes of data.

Following functions are suitable to read (and write) one full sector at once :

• MifReadWriteSect(BOOL w, BYTE addr, BYTE data[],
 BYTE key_value[6])

• MifReadWriteSectK(BOOL w, BYTE addr, BYTE data[],
 BYTE key_ident)

Be careful that on Mifare 4k cards there’re two different sector size (and therefore
two different buffer size for the data parameter) : sectors 0 to 31 are made of 3 data
blocks (+ 1 block for sector’s trailer), i.e. 48 bytes, where sectors 32 to 39 are made of
15 data blocks (+ 1 block for sector’s trailer), i.e. 240 bytes.

On Mifare 1k all sectors are 48 bytes.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 39 / 60

7. WORKING WITH T=CL CARDS

ISO/IEC 14443 layer 4 is often named “T=CL protocol”, after “T=0” and “T=1”
smartcard asynchronous serial protocols. This implies that the application may exchange
frames with the card, without any specific processing by the reader15.

In our case, the application is physically running inside the reader, but this doesn’t
make a difference…

7.1. ENTERING ISO/IEC 14443 LAYER 4

7.1.1. Type A

14443-A T=CL card are recognized by bit 5 being set in SAK. To enable T=CL
communication with the card, the reader shall send a “select” frame, to which the card
answer with its Answer To Select (ATS).

More than one T=CL card may be selected at the same time by the application,
using a short Card IDentifier (CID). In this chapter, we limit us to a single card. CID will
be fixed to 0xFF (“CID not used” reserved value).

Here’s the code for T=CL activation of a type A card :

if (iso3a_tag.sak[0] & 0x20)
{
 /* Card is T=CL compliant */
 rc = TclA_GetAts(0xFF, NULL, NULL);
}

Complete prototype of TclA_GetAts is :

TclA_GetAts(BYTE cid, BYTE ats[], BYTE *atslen)

You can use the ats parameter to retrieve card’s Answer To Select (this is more
or less the equivalent of the ATR of a T=0 or T=1 contact smartcard).

7.1.2. Type B

14443-B T=CL card are recognized by bit 0 of byte 9 being set in ATQ. To enable
T=CL communication with the card, the reader shall send an “attrib” frame.

Once again, more than one T=CL card may be selected at the same time by the
application, using a short Card IDentifier (CID). We limit us to CID = 0xFF (“CID not
used” reserved value).

15 Different from Mifare mode where the application relies on the reader –on the RC531,

actually– to perform on-the-fly CRYPTO1 ciphering and de-ciphering.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 40 / 60

Here’s the code for T=CL activation of a type B card :

if (iso3b_tag.atq[9] & 0x01)
{
 /* Card is T=CL compliant */
 rc = TclB_Attrib(0xFF, iso3b_tag.atq);
}

I Type B “attrib” command (ATTRIB) is “addressed” to one specific card, so card’s
PUPI (4-first bytes of ATQ) must be provided to TclB_Attrib.

Type A “get ATS” command is “broadcasted”, but only the currently selected card
will accept the command, that’s why TclA_Halt doesn’t need card’s UID.

7.2. EXCHANGING FRAMES WITH THE CARD

Once a T=CL card has been selected, exchanging frames with it is as easy as
calling Tcl_Exchange, whatever the type of the card.

Here’s the prototype :

Tcl_Exchange(BYTE cid,
 BYTE send_buffer[],
 WORD send_len,
 BYTE recv_buffer[],
 WORD *recv_len);

In our examples cid will be fixed to 0xFF. send_len (and *recv_len) are
limited only by reader’s memory and by card’s in/out buffer –the second being often
shorter than the first.

C
According to the OSI model, the Tcl_Exchange is on top of the stack,
implementing a dialog reader application ßà card application. Size of frames at
this level is limited only by application specifications and available memory.

Lower layers in the stack may use shorter buffers ; in this case the application
buffer must be split in one or more smaller frames.

Upon transmit, this is done automatically by K531 INS library, according to the
size of receive buffer asserted by the card (value to be retrieved from ATS or
ATQ).

In the other way, the reader is able to accept 256 bytes at once (maximum
specified by ISO), but can also merge transparently the incoming frames split by
a card having a too short transmit buffer.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 41 / 60

7.2.1. ISO/IEC 7816 commands and APDUs

As ISO/IEC 14443-4 is the contactless equivalent of ISO/IEC 7816-3 T=1 protocol,
most card manufacturers and/or card application designers implement ISO/IEC 7816-4
commands and T=1 formatted APDU in their card and/or applets16.

Using ISO/IEC 7816 formalism, we can understand send_buffer as follow :

• Case 1 APDU

Offset 0 1 2 3
Item CLA INS P1 P2

• Case 2 APDU

Offset 0 1 2 3 4
Item CLA INS P1 P2 LE

• Case 3 APDU

Offset 0 1 2 3 4 5 to send_len-2
Item CLA INS P1 P2 LC Data

• Case 4 APDU

Offset 0 1 2 3 4 5 to send_len–2 send_len–1
Item CLA INS P1 P2 LC Data LE

Using ISO/IEC 7816 formalism, we can understand recv_buffer as follow :

Offset 0 to *recv_len-2 *recv_len–2 *recv_len–1
Item Data SW1 SW2

C
Mapping of APDUs into T=CL frames is not clearly specified, and handling tge LE
byte appears to vary along applet developers.

We’ve seen some cards where LE is ignored (case 2 being equivalent to case 1,
case 4 being equivalent to case 3, both returning a variable length answer), some
others where LE must be removed in cases 2 and 4 (card always returns a variable
length answer, and returns an error when LE is provided), and some others working
like T=0 cards (case 4 not allowed).

When working with a “7816-4 compliant” T=CL card, read carefully its
documentation, looking for any precision regarding the mapping of APDUs.

Don’t be surprise to receive more than LE +2 bytes, and size recv_buffer in order
to allow it. Keep in mind that LE=0x00 can be understood either as “256 bytes” or
as “any length up to 256 bytes”.

16 ISO/IEC 7816-4 “interindustry command for interchange” defines a basic command set

for smartcards providing a file-system feature (directory and files selection, read and write into
files) and secure communication.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 42 / 60

7.2.2. Other frame formats

Some card manufacturers and/or card application designers choose to provide
their own list of commands, with their own proprietary format, instead of using 7816-4
command set and APDU formalism.

For instance, NXP Desfire card use the following model :

• Application à card (send_buffer)

Offset 0 1 to send_len–1
Item Command Data

• Card à application (recv_buffer)

Offset 0 1 to *recv_len–1
Item Status SW1

C
When working with such a proprietary protocol, pay a lot of attention to examples
provided by card’s developer. Try to prototype the application on PC with a
desktop contactless reader. It will always be a gain of time, since debugging is
virtually impossible in the K531.

7.2.3. Closing communication correctly

Once a card has entered 14443-4 layer, it remains active until you Deselect it,
where it goes back into the Halted state (same as IsoA_Halt and IsoB_Halt when
card is still at 14443-3 layer).

The Deselect function is :

Tcl_Deselect(BYTE cid)

M You must Deselect the card you’re working with before trying to activate another
card with the same CID, even if you assume that the card has been removed
from the RF field.

TclA_GetAts and TclB_Attrib will fail with error TCL_CID_ACTIVE if their cid
parameter references a card that hasn’t been Deselect.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 43 / 60

7.3. DESFIRE EXAMPLE

As the Desfire cards supplied in the SDK are “blank”, we limit us to the Desfire
“GetVersion” command, which returns 28 bytes of data, split into 3 frames17.

Reading data from a file on the card will use a different command sequence, but
there’s no difference in the method.

a. Source code

HelloWorld_7_3.c

/* Is this a Desfire card ? */
if ((iso3a_tag.atq[1] == 0x03)
 && (iso3a_tag.atq[0] == 0x44))
{
 BYTE send_buffer[1];
 BYTE recv_buffer[24];
 WORD recv_len;

 /* Yes ! */
 print_s("Desfire\r\n");

 /* Enter T=CL layer */
 rc = TclA_GetAts(0xFF, NULL, NULL);
 if (rc == MI_OK)
 {
 /* Send the GetVersion command */
 send_buffer[0] = 0x60;
 recv_len = sizeof(recv_buffer);
 rc = Tcl_Exchange(0xFF, send_buffer, 1,
 recv_buffer, &recv_len);
 if ((rc == MI_OK) && (recv_buffer[0] == 0xAF))
 {
 /* First exchange OK
 status is "OK, another frame to follow" */
 print_h(&recv_buffer[1], recv_len-1, FALSE);
 print_s(NULL);

 /* Ask for second frame */
 send_buffer[0] = 0xAF;
 recv_len = sizeof(recv_buffer);
 rc = Tcl_Exchange(0xFF, send_buffer, 1,
 recv_buffer, &recv_len);
 if ((rc == MI_OK) && (recv_buffer[0] == 0xAF))
 {

17 Please refer to NXP’s Desfire datasheet v3.1, paragraph 4.4.6, for details.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 44 / 60

 /* Second exchange OK
 status is "OK, another frame to follow" */
 print_h(&recv_buffer[1], recv_len-1, FALSE);
 print_s(NULL);

 /* Ask for last frame */
 send_buffer[0] = 0xAF;
 recv_len = sizeof(recv_buffer);
 rc = Tcl_Exchange(0xFF, send_buffer, 1,
 recv_buffer, &recv_len);
 if ((rc == MI_OK) && (recv_buffer[0] == 0x00))
 {
 /* Third exchange OK
 status is "OK, terminated" */
 print_h(&recv_buffer[1], recv_len-1, FALSE);
 print_s(NULL);
 }
 }
 }

 /* Deselect the Desfire card */
 Tcl_Deselect(0xFF);
 }
} else
{
 /* Not a Desfire card, halt it right now */
 IsoA_Halt();
}

b. Output

A few explanations :

• First frame is “hardware information”. It starts with Vendor ID = 0x04.
That’s NXP –formerly Philips Semiconductors–. Hardware release is 0.2 .

• Second frame is “software information”. Again, it starts with Vendor ID =
0x04. Software release is 0.6 (“Desfire v6” card).

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 45 / 60

• Last frame contains UID, batch number, and production information.
Observe that the 7-bytes UID also starts with 0x04, meaning that the card
has been assigned its UID by NXP…

7.4. JAYCOS EXAMPLE

As the Jaycos cards supplied in the SDK are “blank”, we limit us to the Jaycos
“GetATR” and “GetChipNumber” commands18.

Reading data from a file on the card will use a different command sequence, but
there’s no difference in the method.

a. Source code

HelloWorld_7_4.c

 rc = IsoB_ActivateIdle(0x00);
 if (rc == MI_OK)
 {
 print_s("Found 14443-B card :\r\n");
 print_s("ATQ=");
 print_h(iso3b_tag.atq, 11, FALSE);
 print_s(NULL);

 /* Note : we can’t guess from ATQ only whether
 the card is a Jaycos or something else */

 /* Enter T=CL layer */
 rc = TclB_Attrib(0xFF, iso3b_tag.atq);
 if (rc == MI_OK)
 {
 BYTE send_buffer[5];
 BYTE recv_buffer[32];
 WORD recv_len;

 /* GetAtr APDU */
 send_buffer[0] = 0x80; /* CLA */
 send_buffer[1] = 0xEC; /* INS */
 send_buffer[2] = 0x00; /* P1 */
 send_buffer[3] = 0x00; /* P2 */
 send_buffer[4] = 0x0C; /* Le */
 recv_len = sizeof(recv_buffer);
 rc = Tcl_Exchange(0xFF, send_buffer, 5,
 recv_buffer, &recv_len);
 if ((rc == MI_OK)
 && (recv_len >= 2)
 && (recv_buffer[recv_len-2] == 0x90)

18 Please refer to Inseal’s Jaycos user guide v.AE, paragraphs 3.2.13 & 3.2.14, for details.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 46 / 60

 && (recv_buffer[recv_len-1] == 0x00))
 {
 /* Exchange OK, SW = 90 00 */
 print_h(recv_buffer, recv_len-2, FALSE);
 print_s(NULL);

 /* Note : here we can consider that the card
 is actually a Jaycos, because the command
 CLA=0x80 INS=0xEC isn’t standard */

 /* GetChipNumber APDU */
 send_buffer[0] = 0xB0; /* CLA */
 send_buffer[1] = 0xEE; /* INS */
 send_buffer[2] = 0x00; /* P1 */
 send_buffer[3] = 0x00; /* P2 */
 send_buffer[4] = 0x08; /* Le */
 recv_len = sizeof(recv_buffer);
 rc = Tcl_Exchange(0xFF, send_buffer, 5,
 recv_buffer, &recv_len);
 if ((rc == MI_OK)
 && (recv_len >= 2)
 && (recv_buffer[recv_len-2] == 0x90)
 && (recv_buffer[recv_len-1] == 0x00))
 {
 /* Exchange OK, SW = 90 00 */
 print_h(recv_buffer, recv_len-2, FALSE);
 print_s(NULL);
 }

 /* Deselect the card */
 Tcl_Deselect(0xFF);
 }
 }
 }

b. Output

A few explanations :

• First frame is the ATR of the card (Answer To Reset that is sent by the card
when powered on by a “contact” smartcard reader). Observe that the ATR
itself ends with 9000, so the GetAtr APDU response ends with 90009000.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 47 / 60

• Second frame is the serial number of the card. It is 8 bytes long. Note that
the 4 first bytes are used as PUPI in ATQ.

7.5. GOING FURTHER

7.5.1. Reading interesting data

Both examples studied here have read intrinsic data, that are available in the
cards even when there’re still blank. Of course a “real-life” reader application will have to
access data stored in one or more files from the card.

The concept it always the same :

• Use layer 3 activation commands to discover the card(s) in the RF field,

• Try to recognize the card from its ATQ when possible,

• Enter layer 4 (T=CL),

• Select the file and fetch the data using APDUs or proprietary commands,
depending on the card itself,

• Deselect the card when done.

C
Pay attention here to end-user experience in front of the reader. There’s no such
an unpleasant think as having to remove the card from the field and insert it back
later, to overcome a communication error.

You must be really strict on error detection, and recognize the two different
cases :

• Card communication error : keep trying silently until success or card
removed,

• Card not correctly formatted, or invalid data read from the card : exit
immediately, report a fatal error on LED and/or buzzer,

7.5.2. Trying to get secure…

Dialog between reader and T=CL card is not authenticated and not ciphered. If
security is needed, it must be provided by an higher layer.

Here’s a short list of possibilities in this domain :

• Implement a symmetric cipher algorithm in the reader19, and use it for
dynamic authentication20 and secure communication,

19 Due to a limited ROM size, implementing DES, 3-DES or AES in K531 will be really

difficult, but a few tiny algorithms provide a decent security level (at least equivalent to Mifare
CRYPTO1) and can be feat in the available ROM. Also consider switching to Pro-Active’s K632
module (with embedded 3-DES and MD5 operators).

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 48 / 60

• Read a static signature from the card together with the data. Send card’s
UID, card’s data and static signature to the host. Let host verify the
signature21,

• Generate a (pseudo)random number (nonce) in the reader, ask card to
dynamically sign this number. Send reader’s nonce, card’s data and
dynamic signature to the host. Let host verify the signature22.

20 In this case we’ll also have to store the keys inside the reader, this is generally speaking

not a good idea…
21 This is a commonly used scheme, even on Mifare cards, built on RSA or Elliptic Curves

asymmetric signature algorithms. Security relies on UID being actually unique, that may be
discussed.

22 This is also a commonly used scheme, typically by payment cards. The signature
algorithm can be any kind of MAC computation (Message Authentication Code), built either on a
symmetric cipher (DES, 3-DES, AES, …) or on an hash functions (MD5, SHA, …).

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 49 / 60

8. OTHER FEATURES

8.1. DRIVING LEDS

• Use function set_leds to configure the LED outputs.

The function accepts 3 parameters, for 3 LEDs : red, green and yellow. Red and
green LEDs have their own output pins (17 & 18). Yellow LED is supposed to be bound to
“user” pin (14).

Values for each parameter can be :

• LED_OFF : LED remains OFF (high level on the output pin),

• LED_ON : LED remains ON (low level on the output pin),

• LED_FAST : fast blinking,

• LED_SLOW : slow blinking,

• LED_HEART : “hear beat” blinking,

• LED_DISABLED : do not drive the LED output.

M Never call set_leds with a value different than LED_DISABLED for yellow LED if
you work with “user” pin either as general purpose I/O or as RS485 driver control
line.

8.2. THE USER I/O PIN

• Use function get_user to configure the “user” pin (14) as input, and read
its input level.

• Use function set_user to configure the “user” pin (14) as output and
define its output level.

M K531 INS library maps yellow LED to “user” pin.

Never call set_leds with a value different than LED_DISABLED for yellow LED if
you work with “user” pin as general purpose I/O and not as yellow LED.

M K531 INS library maps RS485 driver control to “user” pin.

Never call set_rs485 if you work with “user” pin as general purpose I/O and not
as RS485 driver control.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 50 / 60

8.3. THE MODE I/O PIN

• Use function get_mode to configure the “mode” pin (16) as input, and read
its input level.

• Use function set_mode to configure the “mode” pin (16) as output and
define its output level.

I On IWM-K531 reader, “mode” pin is an output that drives the buzzer.

8.4. WORKING WITH TIMERS

As seen in 3.2.2, the K531 INS library provides an easy way to implement
timers, with a millisecond resolution.

If this example, we use 2 timers to perform some action on the LEDs :

• When a 14443-A card is found, we switch green LED ON and launch a fast
blinker on yellow LED, both for 3 seconds. Red LED resume its “heart-beat”
after 10s.

• When a 14443-B card is found, we do the exactly same, but with a slow
blinker on yellow LED.

HelloWorld_8_4.c

static DWORD led_tmr_1, led_tmr_2;

void main(void)
{
 (...)

 for (;;)
 {
 (...)

 /* 14443-A lookup */
 rc = IsoA_ActivateAny();
 if (rc == MI_OK)
 {
 /* 14443-A LED sequence */
 set_leds(LED_OFF, LED_ON, LED_FAST);
 led_tmr_1 = timeout_init(3000); /* 3000ms = 3s */
 led_tmr_2 = timeout_init(10000); /* 10000ms = 10s */
 }

 (...)

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 51 / 60

 /* 14443-B lookup, AFI = 0 (any application) */
 rc = IsoB_ActivateAny(0x00);
 if (rc == MI_OK)
 {
 /* 14443-B LED sequence */
 set_leds(LED_OFF, LED_ON, LED_SLOW);
 led_tmr_1 = timeout_init(3000); /* 3000ms = 3s */
 led_tmr_2 = timeout_init(10000); /* 10000ms = 10s */
 }

 (...)

 /* Check if a timer has expired */
 if (timeout_expired(led_tmr_1))
 {
 /* Stop green & yellow LEDs */
 set_leds(LED_IGNORE, LED_OFF, LED_OFF);
 led_tmr_1 = timeout_kill();
 }
 if (timeout_expired(led_tmr_2))
 {
 /* Start "heart-beat" on red LED */
 set_leds(LED_HEART, LED_IGNORE, LED_IGNORE);
 led_tmr_2 = timeout_kill();
 }
 }
}

8.5. DATACLOCK OUTPUT

K531 can be used to build a Dataclock reader. The Dataclock pins are multiplexed
with the RX/TX pins of the serial line.

In this mode, pin “TX” (12) is the CLOCK line, and pin “RX” (11) the DATA line.
Both lines are active low.

M Since Dataclock outputs are multiplexed with UART, never call print_s or alike
function, nor serial_1_send_byte when implementing a Dataclock reader.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 52 / 60

a. Dataclock functions

• Use function dataclock_out to send a decimal sequence on Dataclock
outputs23.

• Use dataclock_out_dw to send a DWORD (32 bits number) on Dataclock
outputs24.

b. Dataclock frame format

Both functions provides a valid ISO2 Dataclock frame, i.e. a frame starting with 16
dummy 0 bits for synchronisation, the Start Of Frame marker (0xB), and terminated by
the End Of Frame marker (0xF) followed by the checksum (LRC). Inside the frame, a
parity bit is added after each digit.

c. Dataclock data flow

0 0 1 0 1 1 0

Hi

CLOCK

data stream

DATA

Hi

Lo

Lo

23 The ISO2 Dataclock standard allows only BCD data (i.e. bytes where both nibbles are

between 0 and 9). The sequence to be sent must be a valid BCD string :

• dataclock_out("0123456789") is correct,

• dataclock_out("0123456789ABCDEF") is incorrect (values 0xA to 0xF will
be replaced by Dataclock separator 0xD,

• dataclock_out("GH...") is forbidden and will produce an unspecified
output.

24 Size of output is exactly 10-decimal digits. For instance, DWORD value 0x001234AB
(1193131 in decimal) will be transmitted as “0001193131”.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 53 / 60

d. Dataclock bit format and timings

Hi

CLOCK

DATA

Hi

Lo

Lo

Next bit
Total bit duration
1.00ms +/- 10%

Attack guard time
0.33ms +/- 10%

Clock pulse time
0.33ms +/- 10%

Decay guard time
0.33ms +/- 10%

The default timings can be modified using function dataclock_set_timing (this
function takes only one parameter ; the 3 times are always equals to keep the cyclic
ratio at 1/3).

8.6. WIEGAND OUTPUT

K531 can be used to build a Wiegand reader. The Wiegand pins are multiplexed
with the RX/TX pins of the serial line.

In this mode, pin “TX” (12) is the DATA1 line, and pin “RX” (11) the DATA0 line.
Both lines are active low.

M Since Wiegand outputs are multiplexed with UART, never call print_s or alike
function, nor serial_1_send_byte when implementing a Wiegand reader.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 54 / 60

a. Wiegand functions

• Use function wiegand_out to send an hexadecimal sequence on Wiegand
outputs25.

• Use wiegand_out_ex to send an arbitrary buffer on Wiegand outputs26.

b. Wiegand frame format

There’s no frame marker, no parity bits, no checksum.

If you need a specific frame format, use wiegand_out_ex with a properly
formatted buffer.

c. Wiegand data flow

0 0 1 0 1 1 0

Hi

DATA 1

data stream

DATA 0

Hi

Lo

Lo

d. Wiegand bit format and timings

DATA 0
or DATA 1

Hi

Lo

Next bit
Total bit duration
1.00ms +/- 10%

Guard time
0.90ms +/- 10%

Pulse time
0.10ms +/- 10%

The default timings can be modified using function wiegand_set_timing.

25 The sequence to be sent must be a valid BCD or Hexadecimal string :

• wiegand_out("0123456789") is correct,

• wiegand_out("0123456789ABCDEF") is correct,

• wiegand_out("GH...") is forbidden and will produce an unspecified output.

26 Calling wiegand_out_ex("123ABZ", 6) is exactly the same

as calling wiegand_out("31323341425A").

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 55 / 60

8.7. STORING NON-VOLATILE DATA

8.7.1. In the RC531

We’ve seen in “Mifare” chapter that access key can be stored in RC531’s EEPROM.
This chip also provides 4 bytes of “free” EEPROM that may be used to store a 32-bit
value (4 bytes).

• Use function PcdGetE2Data to read this value,

• Use function PcdSetE2Data to write this value.

8.7.2. In R8C-25’s data flash

R8C-25 features a 2kB flash memory dedicated to data storage. K531 INS
library makes it available under the name “FEED” (Flash Emulating EEPROM for Data).
The FEED can be seen as a list where persistent data can be inserted –and retrieve– by
their line index (or item identifier).

Up to 254 items can be stored in the FEED. Each item can occupy any size
between 1 and 32 bytes.

• Use function feed_read to read a, item from the list,

• Use function feed_write to insert or update an item in the list,

• Use function feed_erase to remove one item from the list.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 56 / 60

9. IMPLEMENTING A “CONSOLE” ON THE SERIAL LINE

The code provided here is based on the “HelloWorld” sample. The key concept is
to separate the receive interrupt handler (serial_1_recv_callback) from the
command processor (in main). Do to so, we use a shared buffer (recv_buffer) and a
shared boolean variable (recv_ready).

a. Updated main code

char recv_buffer[64];
volatile BOOL recv_ready;

void main(void)
{
 (...)

 for (;;)
 {
 (...)

 /* Something received on serial line ? */
 if (recv_ready && strlen(recv_buffer))
 {
 /* Dummy console processor,
 just echo back the command... */
 print_s("You've entered : \"");
 print_s(recv_buffer);
 print_s("\"\r\n");
 recv_buffer[0] = '\0';
 recv_ready = FALSE;
 }
 }
}

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 57 / 60

b. Updated serial_1_recv_callback code

void serial_1_recv_callback(BYTE r)
{
 int l = strlen(recv_buffer);

 if ((r == '\r') || (r == '\n'))
 {
 /* CR or LF -> ready to process the command */
 recv_ready = TRUE;
 /* Echo : send CR/LF */
 print_s(NULL);
 } else
 if (r == 0x08)
 {
 /* Backspace */
 if (l > 0)
 recv_buffer[--l] = '\0';
 print_b(r); print_b(' '); print_b(r);
 } else
 if (l < sizeof(recv_buffer)-1)
 {
 /* Enqueue in buffer */
 recv_buffer[l] = r;
 recv_buffer[l+1] = '\0';
 /* Echo */
 print_b(r);
 }
}

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 58 / 60

10. OTHER SAMPLE INCLUDED IN THE SDK

a. Serno_Serial_Reader

This project is not really different from what we’ve seen in chapter 5. It
implements a basic card lookup, and sends the information over the serial line.

There are 2 noticeable points anyway :

• We add a 1s (1000ms) delay between two consecutive outputs on serial
line.

This is a typical value in practical applications, where the receiver (access
control device, cash-machine, …) is unable to process more than one “tag”
at a time.

• We switch OFF the RF field between two consecutive lookups, with a 100ms
interval between the pulses. The major consequence is to reduce average
power needed by the device (and therefore the dissipated heat).

The 100ms delay –hardly noticeable by end-user– is also a typical value, in
some cases even 250ms are possible without significant impact on user’s
experience, where in other cases (long transactions, i.e. slow cards or lot of
data to be read) 25 to 50ms may be better.

b. Serno_WiegandDataclock_Reader

Same as above, but with a Wiegand or Dataclock output. In this code the output
mode is defined at compile time (BOOL output_wiegand), but it is easy to move it to a
persistent configuration area, either RC531’s EEPROM (§ 8.7.1) or in the FEED (§ 8.7.2).

Observe how we translate the 4-byte card ID to a 10-digit decimal number when
working in Dataclock mode, while we send it without prior translation in Wiegand mode.

C
This really simple code is at the basis of Pro-Active IWM-K531. We’ve only added
a “configuration card” handler and store the settings in RC531’s EEPROM.

c. Mifare_Serial_Reader

This is a practical implementation of what we’ve seen in chapter 6. Once again,
configuration data (BYTE address_on_tag) should be moved to a persistent
configuration area.

Interesting point : when we fail to read the card, we try again immediately instead
of waiting 100ms.

d. Mifare_WiegandDataclock_Reader

Same as above, but with a Wiegand or Dataclock output.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 59 / 60

e. Mifare_Serial_Encoder

This is an “improvement” of paragraph c, but now we write something in the card
each time we see it. The serial line accepts two commands : “E” to erase the cards
(write zeroes instead of data), and “W” to go back to write mode.

SDK K531/INS
 DEVELOPER'S GUIDE

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.
PMDE100 AA Page : 60 / 60

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a
commercial offer, a license, an advisory, fiduciary or professional relationship between Pro -Active and you.
No information provided in this document shall be considered a substitute for your independent
investigation.

The information provided in document may be related to products or services that are not available
in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the
applicable law. While Pro -Active will use reasonable efforts to provide reliable information, we don't warrant
that this document is free of inaccuracies, errors and/or omissions, or that its content is appropriate for your
particular use or up to date. Pro -Active reserves the right to change the information at any time without
notice.

Pro-Active does not warrant any results derived from the use of the products described in this
document. Pro -Active will not be liable for any indirect, consequential or incidental damages, including but
not limited to lost profits or revenues, business interruption, loss of data arising out of or in connection with
the use, inability to use or reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where
malfunction of this product may result in personal injury. Pro -Active customers using or selling these
products for use in such applications do so on their own risk and agree to fully indemnify Pro -Active for any
damages resulting from such improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of Pro
Active and/or its suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you
constitute a license and not a transfer of title : you may not remove this copyright notice nor the proprietary
notices contained in this documents, and you are not allowed to publish or reproduce this document, either
on the web or by any mean, without written permission of Pro -Active.

EDITOR’S INFORMATION

Published by Pro-Active SAS, 13, voie La Cardon 91120 Palaiseau – France

R.C.S. EVRY B 429 665 482 - APE 722 Z

For more information, please contact us at info@pro-active.fr .

