Lo

SDK K531/INS
Developer's guide

PMDE10O rev. AA

Rm SDK K531/INS
ctive

6.

DEVELOPER'S GUIDE
CONTENTS

INTRODUCT EON. ..ttt ettt ettt ettt a et a e e e a e e e e na e e e eananen 4

0 O = 1 5 0 T = 1= PP 4
1.2, ABOUT THIS MANUAL .ttt et ettt et ettt e a e e e e e e e e e e aaete e e eaneaneaneaneanens 4
G T N | 1 =1 o] =S 4
1.4. SUPPORT AND UPDATES ... utututntueueueeaeansneneeananansneneasananansnseaeananensnsaeaeananns 5
THE K531 PRODUCT FAMILY ..eiiiiiii ettt ettt et e e e e e eneeaneaens 6
2.1. K531 PINOUT AND BASIC OPERATION. .. .utuueuttuentneaneeaneaeaneaeaneaneneananeaneneanenens 6
2.2. PROGRAMMING MODEL ...uttuauatatattae ettt et e et e e e e e e et et e e eeeaneaneanenen 7
2.2.1. About the K531 INS lDrary ... 8
2.2.2. Differences with Pro-Active out-of-shelf productsc.o..... 8
2.3. VARIOUS HARDWARE ...tuutuntutnenteaeteaeteaeantaeanseansnansananeananeananeanannanennanennnn 8
2.3.1. RS232 0r USB serial INe ..o e 8
2.3.2. Antennas With RS485 liNK ... 9
2.3.3. Antennas with Dataclock or Wiegand lin€scccoveeiiiiiiiiiiiiiinnnnen.. 9
THE RENESAS RBC/25 MCU ...ttt ettt et eaae e 10
3.1, SYSTEM MEMORY ettt et et et ettt ettt e et m e e e e e e e e e e e e aanan e aanans 10
3.1.1. How compiler maps each itemM..........cccoiiiiiiiiii e 10
3.1.2. Important note regarding Stack..........cooeiiiiiiiiiiiiiii e 10
3.1.3. Accessing the memory mMappingco.oueeeieiiieeeee e 11
3.1.4. Afew important NiNS ... e 12
3.2. K531 IMPLEMENTATION SPECIFICS .. uuuutititit ettt e et e e e e e ee e e e ee e eaeeas 13
3.2.1. Reserved peripheralso 13
3.2.2. Clock frequency and main tiMero 13
3.2.3. Serial lINE .. 13
3.2.4. RCB3L ChIPSEL ... e e aeaaa 14
THE HELLOWORLD PROJECT ..ttt ee e e e eeeeeeeneaenenes 15
4 O O =] oy 4 | 16
4.2. BUILDING THE PROJECT uuuutuatutaentaneteaeaneaeaneaeaneeaneasansasaneananeananeanennananens 17
4.3, FLASHING THE DEVICE ..ttt eaeae et et ettt e e e e e e e e e e e e e aaeaeaaeeaneannn 19
4.4, TESTING OUR PROGRAM .. .uututna ettt ae ettt et e et et aa e e e ea e ae e e eaeeaeeane 21
T4 T Y7y N N =5 22
CONTACTLESS OPERATION . ittt ettt ettt et e e e e e e eaneeas 23
5.1. ACTIVATION OF THE RCSE3 L. ..ttt eeaeas 23
5.2, LOOKING FOR A CARD ...uutuatat ettt et ettt et e m et e e e e et e e e e eaeean e aaeeas 24
5.2.1. ISO/IEC 14443-A layer 3 activatiONcccveieiieiiiiiiiieiiieieaeeeenaes 24
5.2.2. ISO/IEC 14443-B layer 4 activationNccooeieviiiiiieiiiiiiiieaeaeaenaes 25
5.3, WORKED EXAMPLES. .. uttuetnataeaeateteaeee et e e eaeeanean e eaneaaean e e nanaaneanaanaanans 26
S T I = 7=] 1 PP 26
5.3.2. Type A anti-ColliSIiON........coi e e 27
WORKING WITH MIFARE CARDS......ee et 29
6.1. RECOGNIZING MIFARE CARDS ...uutuutattteaetttaeeaneanean e e eaaeannaanaanaaneanaaneanens 29
6.2. READING A BLOCK- .. .utuututeaet et et e et e et e e et e et eaa e e aneaeaneananeananeaneneananens 30
6.3. MIFARE ACCESS KEYS . .uuiuntua ettt et ettt ettt e am et e e e e et e e e e aaeean e aanans 30
6.3.1. Storing the Keys in Programl... ... eeeeae 31
6.3.2. Using RC531’s secure EEPROM ..o 31

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 2/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

B.4. VVORKED EXAMPLE ...ttt teieee e taaaan e e e eaaans e e e eaaannneeeeasnnnneeeeasannnneees 33
5.5, GOING FURTHER . 1ttt ettt ettt e et e e et e s e e e e an s e e e e ann e e e e eansnnneeeaasnnnneees 35
6.5.1. Writing data into the card ... 35
6.5.2. The Mifare Application Directory (MAD).......ccceiiiiiiiiiiiiiiieieeeene, 37
6.5.3. Working with one sector at ONCEe........ccoceiiiiiii i 38

7. WORKING WITH T=CL CARDS ... e e e e 39
7.1. ENTERING ISO/IEC 14443 LAYER 4 ...nneeeie e et e a e eeaneeas 39
200 S R IV o T 39

T L 2. TYPE B o e, 39
7.2. EXCHANGING FRAMES WITH THE CARD . .uuuttueeeteeeeeeeaaneeeanseaaneesannesaanneens 40
7.2.1. 1SO/IEC 7816 commands and APDUS. ...t eeeeeeeas 41
7.2.2. Other frame fOrMaAtS e e et e e eaaneeanns 42
7.2.3. Closing communication Correctlycoooiiiiiiiiiiiiiiiiceeceeene 42
7.3, DESFIRE EXAMPLE ...ttt ettt e e taa s e e e taaan s e e e eaananneseeasnnnneeeaasannnneees 43
T4, JAYCOS EXAMPLE ..ttt e e e e e et e e e e e et m e e e s e saaa s e ean s e eane e sanneeaanneenn 45
S TR €0 1N L = U] = 1 = = 47
7.5.1. Reading interesting dataccooiiiiiiiiiiiii e 47
7.5.2. Trying 10 0T SECUNE... cuenii ettt a e e enenan 47

8. OTHER FEATURES ..ot e e e e ettt e e e e e eaa e e aanees 49
B.L. DRIVING LEDS ..t et e ettt et et e aaenne e e aaaannneens 49
8.2. THE USER 170 PIN ettt et ettt e et e e et e e e e e e ea e e ean e e taneraanneenn 49
8.3. THE MODE 170 PIN. .ttt ettt e et e e et e et e e e eenrens 50
8.4. VVORKING WITH TIMERS .1 uttettinneeeetaannneeetaaaneeeeeasnnnneeeeasannnneeeeasannneees 50
SIS T B - X I Yo @ 1 U 1 1 = 51
8.0, VVIEGAND OUTPUT . tttneeeetaaaeee e taaaan e e e eaaans e e e eaannnnessaasnnnnereeaaannnneees 53
8.7. STORING NON-VOLATILE DAT A «uuuuuetttteaaneeetaaanneeeeeasnnneeeeaassnnneeeeeasannneees 55
B.7.1. INthe RCE .. e e e et eaaneeanas 55
8.7.2. INRBC-25'sdata flash ..o e as 55

9. IMPLEMENTING A “CONSOLE” ON THE SERIAL LINEciiiiiiiiieinnn... 56
10. OTHER SAMPLE PROJECTS IN THE SDK ...ttt eeaenaeanns 58

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 3/60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

1. INTRODUCTION

1.1. PRODUCT BRIEF

Pro-Active K531 is an ISO/IEC 14443 coupler. As an OEM device, it provides an
easy-to-use versatile interface between a computer or a microcontroller, and contactless
cards or RFID tags.

Sometimes, it appears that embedding specific functions inside the K531 itself can
be a great feature for the integrator : it can totally remove the need for an external host
microcontroller, or at least allow to use a cheaper one —slower, smaller—, and it helps
achieving the fastest transaction speed by dramatically reducing the number of
exchanges between reader and host.

The SDK K531/INS is a set of source code and sample projects that make it easy
to develop virtually any contactless-related application for the K531.

1.2. ABOUT THIS MANUAL

This manual is the reference guide for developers working on the K531 and its
derivatives.

W This document refers to release 2R of the coupler (K531-2R).
Earlier releases are not compliant with the K531/INS SDK.

Some parts of this manual focus on operating the device together with the cards
that are supplied in the development kit :

NXP Mifare Standard
NXP Mifare UltralLite
NXP Desfire
INSEAL Jaycos.
Of course K531 is able to communicate with other kind of cards.

1.3. AUDIENCE

This developer’s guide is designed for use by application developers. It assumes
that the reader has expert knowledge of electronics and embedded software
development, using the C language.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 4/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

As the K531 module can virtually dialog with any ISO/IEC 14443 contactless card,
it is better to have a good understanding of this standard™.

More than that, working with a specific contactless card involves a complete
understanding of the card itself. Please read carefully the datasheet and operating
manual of the card(s) you plan to work with, to know clearly

How the card must be operated at the contactless communication level (full
or partial 14443 compliance, type A or type B)

How the card must be operated at the application level (proprietary
command set, ISO/IEC 7816-4 compliance, ...).

1.4. SUPPORT AND UPDATES

Interesting related materials (datasheet, application notes, sample softwares...)
are available at Pro-Active’s web site : www.pro -active.fr .

Updated versions of this document and others will be posted on this web site as
soon as they are made available.

For technical support enquiries, please refer to Pro-Active support page, on the
web at address www.pro-active.fr/support .

1 International standard must be bought from 1SO. Free drafts can be found at

www.14443.0rg .

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 5/60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

2. THE K531 PRODUCT FAMILY

2.1. K531 PINOUT AND BASIC OPERATION

a. Pinout
NC: 1 |© ; — ®] 20 : Vcc
Signal : 2 |@® I1SO/IEC 14443 @[19: Gnd
Vce: 3 |@ OEM MODULE ®| 18 : Green LED
Gnd: 4 @ K531-2R ®©| 17 : Red LED
NC: 5 [@ ®| 16 : Mode
Gnd: 6 |© R_m ©)|] 15 : /Reset
MfOut: 7 [@F | SV RE LN | ©| 14 : User
Mfin: 8 |@ ®] 13 : NC
RFU: 9 [@ ©]12: TX
/Flash :10 |® B 11 : RX

— | —

Module is powered by Vcc = 5V.

Connect antenna between pin “Signal” (2) and Gnd. Follow datasheets and
application notes for details.

Pin “/Reset” (15) must be set to Vcc (or left unconnected) for operation.

Pin “/Flash” (10) must be set to Vcc (or left unconnected) for standard operation.
Set “/Flash” to Gnd only when you want to download a new firmware into reader’s flash
memory (ROM).

b. Serial communication

Serial communications uses UART 1 of the MCU. Pin “TX” (12) is the output (MCU
to host) and pin “RX” (11) the input (host to MCU).

Both pins are 0-5V. An external line driver is required for RS-232 operation (or
RS-422 or RS-485).

C. 1/0s

Pin 17 is an output only. Default implementation is to connect it to a green
LED.

Pin 18 is an output only. Default implementation is to connect it to a red
LED.

Don’t connect pin 17 & 18 directly to the LEDs, a LED driver is required (see
relevant application note).

“User” (14) is either input or and output depending on software.

“Mode” (16) is either input or and output depending on software.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 6/60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

When using pin 14 or pin 16 as output, observe same precautions as for pins 17 &
18.

d. Mfin/MfOut

Those pins are directly connected to NXP RC531’ MfIn & MfOut pins. Refer to NXP
documentation for information.

2.2. PROGRAMMING MODEL

The diagram below depicts the K531 programming model.

You've complete control on the actual application, starting at function main
entrance (and typically never exiting !).

The underlying complexity of the NXP MfRC531 chipset and of the ISO/IEC 14443
standard is totally hidden by the K531 INS library. The hardware abstraction layer and
the standard C runtime library let you focus on the core of your project.

Your application here !
MIFARE 14443 layer 4 (T=CL)
> | functions functions >
© ©
| - | -
o, 14443 layer 3 - A 14443 layer 3 - B O
— functions functions —
) (b}
Z £
— Philips’ MfRC531 basic function library E‘
® =
4 Hardware abstraction layer (HAL) O
(Serial port) D i (b
' Philips
2 LEDs out R8C/25
(.) MCU MfRC531 Antenna
(USERIO)

(IMODE o) K531 hardware

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 7/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

2.2.1. About the K531 INS library

The K531 INS library is a complete set of function that gives you complete and
easy access to all the feature of the K531 and its ISO/IEC 14443 contactless interface.

Thanks on an adaptive hardware abstraction layer, all Pro-Active’'s contactless
products are build on the same core library, from inexpensive K531 OEM
modules, to mobile SpringProx couplers for PocketPC and desktop CSB products.

The K531 INS library is the K531-2R build of this core library.

Once your application has been written with this SDK, it can virtually be ported
to any other Pro-Active device. Don’t hesitate to contact us if you think you can
embed your application in our others products.

The documentation of the library is located in the docs/ k531 i ns directory of
this SDK, listing all function prototypes and available features.

é) This document provides a few useful examples but doesn’t cover all the functions.

Only the docs/ k531 _i ns documentation is the reference for function prototypes,
return values and potential side-effects.

2.2.2. Differences with Pro-Active out-of-shelf products

Pro-Active contactless products (K531, CSB, SpringProx...) are also built on top of
the same library, as your project will.

The difference is lying in the «your application here !» panel, where Pro-Active
puts its host communication layers (modified OSI 3994, fast binary, ASCII) and its
console processor.

Due to the limited size of memory available in K531, we can't embed both « your
application » and our host communication layer, that make our devices work with our
host-based SpringProx API.

2.3. VARIOUS HARDWARE

The K531 module can be used on different hardware configurations. The common
part is the contactless antenna, which must be designed with care for proper operation.

2.3.1. RS232 or USB serial line

In this typical configuration, the RX/TX pins are bound to an RS232 line driver
(MAX232 or alike), or to an USB <-> serial bridge (FTDI FD232 or alike).

This is for instance the configuration provided by K531-232 board (OEM antenna
with RS232 link), IWM-K531-232 (wall-mount reader with 232 link), IWM-K531-USB
(wall-mount reader with USB link).

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 8/60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

2.3.2. Antennas with RS485 link

In this typical configuration, the RX/TX pins are bound to an RS485 line driver.
Transmit mode is driven by pin “Mode”.

This is for instance the configuration provided by K531-485 board (OEM antenna
with RS485 link) and IWM-K531-485 (wall-mount reader with 485 link).

2.3.3. Antennas with Dataclock or Wiegand lines

In this typical configuration, the UART is disabled. RX/TX pins outputs only, and
deliver either an 1SO2 (data-+clock) or a Wiegand (DO+D1) signal.

IWM-K531-485 motherboard can be configured to provide this feature.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 9/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

3. THE RENESAS R8C/25 MCU

The core of the K531 is the Renesas R8C/25 MCU.

Please download the R8C/25 hardware manual from Renesas’ web site :
http://www.renesas.com > « Global site »,
« M32C/M16C/R8C » = « M16C » - « R8C/Tiny » = « R8C/25 group ».

Choose the «R8C/24, R8C/25 group hardware manual» in the
documentation page.

This is the current URL of the manual :
http://documentation.renesas.com/eng/products/mpumcu/rej09b0244 r8c2425hm.pdf

Be careful that it may be moved to another URL at any time.

3.1. SYSTEM MEMORY

Reference Renesas Program Flash Data Flash RAM
R8C/25 MCU (*ROM")
K531-2R R5F21256 32kB 2kB 2kB

3.1.1. How compiler maps each item

Program code goes into Program Flash (sections : program, switch table,
interrupts),

Constants (C “const” keyword) go into Program Flash (sections rom_xx),

Un-initialised global or static variables go into RAM (sections bss_xx ; they are
implicitly initialised at 0 on start-up),

Initialised global or static variables go both into RAM —where they are used—
and into Program Flash —where their initial value is stored— (sections
data_xx),

Automatic variables are allocated on the stack. Their initial value —if some—
is embedded in the program itself.

The Data Flash provides a persistent storage (“FEED”), see chapter 8.
3.1.2. Important note regarding stack

The R8C/25 has two different stack pointers :
The USER stack pointer is used by the application,
The SYSTEM stack pointer is used by the interrupt handlers.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 10/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

When your code calls a function from the K531 INS library or from the G

runtime library, it will use either the USER stack or the SYSTEM stack, depending on the
context of the caller.

All the examples provided in this SDK are configured as follow :
768B of USER stack
128B of SYSTEM stack.

w High-level K531 INS library functions need at least 512B of stack memory to
accommodate nested calls. Never call a K531 INS library function from an
interrupt handler since the SYSTEM stack is far too small.

% Avoid recursive functions.

Forbid oversized automatic variables.

Use the st ati ¢ keyword to put local variables outside the stack whenever it is
possible.

You can change the stack settings in HEW :
« Build » menu,
« Renesas M16C Standard Toolchain » menu item,

« C » section,

In the «Options C » text box, edit defines __ STACKSIZE___ (USER stack)
and __ISTACKSIZE__ (SYSTEM stack).

‘\f\g Setting __ STACKSIZE__ to a value less than 728B (0x300) or _ ISTACKSIZE
to a value less than 128B (0x80) is not recommended.

3.1.3. Accessing the memory mapping

If you want to verify or modify the memory mapping :
« Build » menu,
« Renesas M16C Standard Toolchain » menu item,
« Link » section,

« Section Order » category.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 11/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Address Section

X
000000400 | data SE

hzz SE
data_50
bzz S50
data_ME
bzz_ME Add...
data_MO
bss_NO Modiy.. |
ghack,
istack
heap ME

000002000 | rom_NE Remove |
rom_M0
data_SEl ﬂ ﬂ
data_501

data_ME| =
data_MOI
sitch_table
program

interpt

Ox0000FEDC wechar

3.1.4. A few important hints

The memory mapping used in this SDK doesn’t reserve memory for the
heap (C dynamic allocation features).

‘\\;\g Never call a function that performs dynamic allocation (rmal | oc, st rdup, ...).

Don’t waste RAM when ROM can be used.

& Use the const keyword to put the « non variable variables » into ROM instead of
RAM whenever it is possible.

Don’'t waste RAM with two static or global variables that are never used in
the same time.

é) Suppose function_A works on big _var_A, and function_B on big_var_ B, where
big_var_A and big_var_B are 1kB buffer (too big for the stack, of course).

If you can make sure that function_A never calls function_B, and function_B
never calls function_A, use an union to store the two buffers at the same place in
RAM.

Some functions from the C runtime library are really huge in ROM.

é) String formatting functions (sprintf and alike) have a really high memory
footprint. Whenever possible, try to rewrite the features you need cleverly,
instead of calling such functions.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 12/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

3.2. K531 IMPLEMENTATION SPECIFICS

3.2.1. Reserved peripherals

The K531 hardware gives strong limitations to the R8C/25 peripherals of the
R8C/25 left available. Moreover, the K531 INS library uses most of the peripherals
through its Hardware Abstraction Layer ; the application should always call the library
functions instead of trying to gain direct access to the hardware.

Peripheral Owner Remarks
Timer RA LIB Use ti neout _ functions.
Timer RB Never activate TRBO
Timer RD Never activate TRDIO
Timer RE Never activate TREO
Port PO
A/D converter
Port P1 HAL RC531 address bus
UART O
Port P2 HAL RC531 data bus
Timer RD 1/0s
Port P3 HAL RC531 control
TRAO & TRBO
12C/SPI
Port P4 HAL Clock input
INTO & INT1 HAL RC531 control
Port P6 HAL & LIB 1/0 pins & RC531 control
UART 1 LIB Use serial _1 andprint_ functions
TREO

R8C/25 peripherals — Greyed items are not available to the application developer
3.2.2. Clock frequency and main timer

In K531 the R8C/25 runs exactly at 13,56MHz Game frequency as RF field for
contactless communication).

Timer RA is reserved by the library and provides a base time of 1kHz (1ms
period). The ti mer _ti cks global variable (DWORD) is set to O on start-up, and increased
by 1 every millisecond. It is available through tinmout _init, timeout _expired and
ti meout Kkill functions or macros.

3.2.3. Serial line

UART 1 peripheral is bound to K531's “RX” and “TX” pins. The serial 1 init

function configures the UART for 8 data bits, 1 stop bit, no parity, no flow control
operation. The baudrate is specified in function call. Available baudrate are :

1200bps,

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 13/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

4800bps,
9600bps,
19200bps,
38400bps,
57600bps,
115200bps®.
The K531 INS library doesn’t allow any other baudrate.

3.2.4. RC531 chipset

In K531, R8C/25 MCU communicates with NXP’ MfRC531 contactless chipset
through a high-speed parallel link. This allows fast communication in both directions.
Anyway, when working with high-speed contactless cards (848kbps T=CL
communication), the R8C/25 may be unable to empty or fill-in the MfRC531 FIFO buffer
at desired speed. Please contact us if you need help on this subject.

2 To achieve this baudrate, an external crystal is required. It is available on K531 devices,
but for example SpringProx PocketPC products are not equipped with it and will hang if the
application tries to initialize their UART at this speed.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 14/ 60

SDK K531/INS
ctive DEVELOPER'S GUIDE

4. THE HELLOWORLD PROJECT

Launch Renesas HEW 4, and open workspace
C:\Renesas\pro-active_k531_ins_r8c-25\projects\Projects.hws

Select the HelloWorld project in HEW projects explorer. Right-click, and
click Set as current project in the popup menu to start working on this
project.

I L e W |—_l£| LT = omz3 | oL ‘] "o | I

3@ Frojects

BT oo

Mifae S Seb as Current Project

Mifas_5 Remove Project

Mifare_ Unload Projeck

SeMo_£

SerMo_ty AddFies... INS

Explore project Helloworld, and open the HelloWorld.c source file.

E:ﬁ:! HelloWorld - High-performance Embedded Workshop - [HelloVorld.c] -0 x|
<5 File Edit Wiew Project Buld Debug Setup Tools Window Help _|ﬁ'|1|
lozEa 28 = e e || SR & S B (R = |
ok)
3 r 2 LiJ —
@ Frojects 21 #include "project.h =
=-[F Helloworld 5 S -
=3 Project C source file vold main{void]
T e 4 i
Hellawiorld. =
H . 5 f* Initialize the whole hardware and hardvare shstract
(2 Shared C source file p hal ini]
-] Dependencies sprox_hal init():
. . 7
----- Mifare_Serial Encoder - s+ Conti el 14 - "
----- Mifare_Serial_Reader a .0111 igt_lrgtn;;qsgr:}a ine at ra
----- Mifare_wiegandD ataclock_Read serial 1 init| I
. 10
----- SeMo_Seral_Reader 11 /v H LED devi .
----- Serto_WiegandD ataclock_Reac BVE S0me S OO our Cewine
12 get_leds (LED HEART, LED SLoOW, LED FAST):
13
14 J* Zay hellao */
15 print_s("Hello, world !Yrhin™):
16
17 % Print date and time of cowpilation */ .
1g print =("KS531 INS SDE - Build : ™ DATE "™ "™ TINME
19
z0 ¥ Wait skbout 0.93 %/
21 sleep_mws (900 ;
22
23 for (2:)
24 1
25 /% Do nothing, but feed the watchdog, overwhise will

Z6 watchdog update () ;
i 1 -
Kl | ® ,il—r ;I_I
Proj.... l] Tem... J @] havi.. I < Hellowiord.c |

| |

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 15/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

4.1. CODE REVIEW

This is the source code of the HelloWorld’s main, without the comments :

voi d mai n(voi d)
{
sprox_hal _init();
serial _1 init(38400);
set | eds(LED HEART, LED SLOW LED FAST);
print_s("Hello, world !'\r\n");
print_s("K531 INS SDK - " DATE " " __TIME__ "\r\n");
for (i;)
wat chdog_updat e() ;

At first we call sprox_hal _init to configure the Hardware Abstraction
Layer.

We initialise the serial line at 38400bps.

The pri nt _s function sends a string on the serial line.

\“.@ The C runtime library provides standard pri nt f function, but the stdin, stdout
and stderr streams are not bound to the serial line. In other words, you can call
printf, but it will do nothing at all (but waste a lot of ROM).

The for(;;) statement is an infinite loop, our application will do nothing,
and do it forever (at least, until we remove power or the device resets®).

% On start-up, the K531 INS library activates the hardware watchdog of the MCU.

The overflow period of the watchdog is about 310ms on K531 (but can be as
short as 150ms on other devices of the family).

Call the wat chdog_updat e in main loop to confirm everything is OK, and at least
every 50ms if you’re ever caught in a function that may last longer.

3 The K531 INS library systematically resets when the tick counter overflows. That is every
OXFFFFFFFF millisecond. If you develop a product that will be always ON —such as an access
control reader- it will reset every 49,71 days. Since the typical reset sequence is shorter than
100ms, the reset will remain virtually undetectable by the end-user, until your application reports
loudly.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 16/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Now consider the second functions in this file :

void serial _1 recv_call back(BYTE r)

{
print_b(r);

This is the callback function that will be called by the K531 INS library each time
a character is received on the serial line.

In this sample we simply call pri nt _b to echo back the received character.

Keep in mind that seri al _1 recv_cal | back is an interrupt handler. This has 2
implications :

X9

SYSTEM stack is selected, never call any stack consuming function from
this call-back, it will overflow,

Until you’'ve returned from this callback, the serial receive interrupt is
inhibited. This means that if you spend too much time processing one
byte, you'll lose the next byte (overrun error).

Chapter 9 gives an example of how-to implement a “console” on the serial line
safely.

There’s a second interrupt handler Gerial 1 error_cal | back) that is called
whenever a communication error is reported by the UART. The overrun flag tells you that
the error is due toseri al _1 recv_cal | back taking to much time.

On communication error, we reset the UART (call serial _1 init again).

4.2. BUILDING THE PROJECT

In main menu, click Build 2> Build All.

E:ﬁ:! HelloWorld - High-performance Embedded Workshop - [HelloWorld.c]

«0= File Edit Yew Project | Build Debug Setup Tools ‘Window Help

J 0= B ﬁ ‘ & | 2 Renesas M16C Standard Toolchain. ., [iy ﬁ- -ﬁ
&2 Euild File Ctrl+F7
— GAE 5 "
El@ Projects [%%] Build project.h
,_—._H@ HelloWw orld E;u".j al Lm el
=-23 F'.":'iECt L soun g id pultiple...
. Hellotorl B . .
|:| Shared C sour Update All Dependencies ?l l zgtﬁle
; ; ini :
F-[C] Dependencies Stop Build ChATTH _
""" Mitare_Serial_Enc Terminate Current Tool
----- Mifare_Serial_FRea - g‘j’-r?t‘_-l:‘:;qs
. . ini
""" bitare_twiegandD. Include)Exclude Euild —
----- SerMo_Seral_Rea
----- SerMa Wienandh - Build Phases... some LEDs

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 17/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Here’s the build output :

Building All - Hellowrld - Rel ease

Phase ML6C C Conpiler starting

C \ Renesas\ Pro-Active_K531_I NS_R8GC- 25\ Proj ect s\ Hel | oWor | d\ Hel | oWrld. c
C \ Renesas\ Pro-Active_K531_| NS_R8C 25\ Proj ect s\ Hel | owor | d\Hel | oWrl d. c
C \ Renesas\ Pro-Active_K531_| NS_RBC 25\ Sour ces\ vectors. c

C \ Renesas\ Pro-Active_K531_| NS_RBC 25\ Sour ces\ vectors. c

C \ Renesas\ Pro-Active_K531_| NS_RBC 25\ Sources\lowinit.c

C \ Renesas\ Pro-Active_K531_| NS_R8C 25\ Sources\lowi nit.c

C \ Renesas\ Pro-Active_K531_| NS_RBC 25\ Sour ces\ corks.c

C \ Renesas\ Pro-Active_K531_| NS_RBC 25\ Sour ces\ corks. c

Phase ML6C C Conpil er finished

Phase ML6C Linker starting

Li nkage Editor (1n30) for R8C/ Tiny, ML6C Series Version 5.12.02. 000
Copyri ght (C) 2005. Renesas Technol ogy Cor p.

and Renesas Sol utions Corp., All R ghts Reserved.

now processing pass 1

processing "C \Renesas\Pro- Active_K531_| NS_R8C- 25\ Proj ect s\ Hel | oWr | d\ Rel ease\ cor ks. r 30"
processing "C \Renesas\Pro- Acti ve_K531_I NS_R8C- 25\ Proj ect s\ Hel | oWor | d\ Rel ease\ Hel | oWor | d. r 30"
processing "C \Renesas\Pro- Acti ve_K531_| NS_R8C- 25\ Pr oj ect s\ Hel | owr | d\ Rel ease\l owi ni t.r30"
processing "C \Renesas\Pro- Active_K531_| NS _R8C- 25\ Proj ect s\ Hel | oWor | d\ Rel ease\vectors.r30"
processing "Libraries"

processing "Libraries"

now processi ng pass 2

processing "C \Renesas\Pro- Active_K531_| NS_R8C- 25\ Pr oj ect s\ Hel | owr | d\ Rel ease\ cor ks. r 30"
processing "C \Renesas\Pro- Active_K531_| NS _R8C- 25\ Proj ect s\ Hel | oWor | d\ Rel ease\ Hel | oWor | d. r 30"
processing "C \Renesas\Pro- Active_K531_| NS _R8C- 25\ Proj ect s\ Hel | oWor | d\ Rel ease\l owi nit.r30"
processing "C \Renesas\Pro- Active_K531_I NS_R8C- 25\ Proj ect s\ Hel | oWor | d\ Rel ease\vectors.r30"

processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_ios_ins.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_con_ins.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_tnr_ins.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (sprox_hal_r8c-25_ins.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_drv.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_cfg.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_pcd.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (rc500_mo.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (serial_1.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (tiner_ra.r30)"
processing "C \Renesas\pro- active_k531_ins_r8c-25\projects\..\Library\r8c-25_k531_ins.lib (watchdog.r30)"

processi ng "C \ Renesas\ NC30WA\ V540R00\ I i b30\r8clib.lib (_i4divu.r30)"
processing "C:\ Renesas\ NC30WA\ V540R00\ 1 i b30\r8clib.lib (_i4mdu.r30)"
processi ng "C \ Renesas\ NC30WA\ V540R00\ | i b30\r8clib.lib (_i4milu.r30)"
processi ng "C: \ Renesas\ NC30WA\ V540R00\ | i b30\r8clib.lib (nnmenset.r30)"

Warning (I n30): License has expired, code limted to 64K (10000H) Byte(s)

DATA 0001266(004F2H) Byt e(s)
ROVDATA 0000464(001D0H) Byt e(s)
CODE 0006489(01959H) Byt e(s)

The val ue of option function select register is FFH
Phase ML6C Li nker finished

Phase ML6C Load Mbdul e Converter starting

Load Modul e Converter (Int30) for R8C Tiny, MI6C/ 60 Series Version
4.01. 01. 000

Copyri ght (C) 2005. Renesas Technol ogy Cor p.

and Renesas Solutions Corp., All R ghts Reserved.

Phase ML6C Load Mbdul e Converter finished

Bui | d Fi ni shed
O Errors, 1 Warning

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 18/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Verify that build has finished with 0 error, and 0 or 1 warning®”.

4.3. FLASHING THE DEVICE

Launch Renesas FDT 3, and open workspace
C:\Renesas\pro-active_k531_ins_r8c-25\flash\Projects.aws
In main menu, click Device - Configure flash project.

Go to the Communications tab in project’s configuration.

x|

T Properky | Value
Baud Rate 358400 bps
Defaulk Baud Rate 500000 bps
Ilse Default Baud Mo

| 4' :I; Kerrel }\Dnmmunitatinns lf{' Device }.' Prograrrner }.' Modules {‘

Ready

Check that the selected serial port is the one your device is connected to. If
not, double-click the Port line, and select appropriate port.

Communications Port |
The FLASH Development Toolkit supports connection through
the standard PC Senal port and the USE port. Use thiz page to

m TG E | zelect your desired communications port. Al zettings may be
Nutlv"-pur&'q'ndl-: .| chanaged after the project iz created.
ot Dedics
SR= Tar:.'::; ;:I“‘ig“-' Select pork IEDM'I vI
1=] LEp. mok COM1
|'_:| Kaybioard.m, COm2
15] Cafnme, it ES
= E.‘:l Select an Interface ype o connect to the target device with,
] Dévice Image Mormally thiz will be "Tirect Connection” or zimply left blank.
] - Target files
= -Drie. ok - -
51 Dataymot Select Interface: IDlrect Connection j

Put your device in flash mode (refer to product manual for details).
Select HelloWorld.mot in Projects - S-Record Files.

In main menu, click, Device - Connect to Device.

4 The warning comes after 30 days when code size limit is enabled. This is not an issue
since we work with a 32k MCU.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 19/ 60

Rm SDK K531/INS
ctive DEVELOPER'S GUIDE

‘1” Projects - Flash Development Toolkit {Unsupported Freeware ¥ersio
File Edit Miew Project Tools ‘Window | Device Help

JE | . B2 |ﬁ' JJE&I_ﬂ Connect ko Device Chr4-Ale4-C

f. Lisconmect

- Projects /5 Erase FLASH Blocks Chrl-+Al-+E
= Projects ¥ Blank Check Chrf+-Al+E

= a 5-Fecord Files

ﬁﬁ pload Image Chrl+alk+H
i ellotwforld. rnok
Miare Senal Encodstr $ Downlnad Active File ChrHAl+P
Mifare_Serial Reader.m &= FLAGH Checksum ChrlH-alE+5
: SerNo_Serial_Reader.m %% Go From Address. .. k-8l 5
b SerND WlegandDataclc
I_.L i~ areal Cinarskiae =Fel LRra sl

Verify than connection is successful :

Connecting to device 'W5 R5F21256' on ' COW'
Confi guration:

' BOOT Mbde' connection - using enulated interface
Openi ng port ' COWR'

Loadi ng Comms DLL

Loaded Comms DLL

Initiating BOOT SCI sequence

Attenpting 9600

Changi ng baud rate to 38400 bps

I D code check successful

Connection conpl ete

Al bl ocks marked as unknown witten status

Right-click Helloworld.mot again, and click Download file in the popup.

El@ Frojects
=[G Projects
=24 5-Record Files

..... E b Cpen Hellohw'orld, mat

..... &+
B INS

..... 35

3 5 Remaove Files, ..

..... HT IT Allow Docking

Hide

Properties

= | Display Block Usage. ..
@ Projects Exclude Helloborld, rmotk
[Iser Baok Flash

Loaded Comms L
Initiating EOC Ciownload File
Lttenpting 96l
Changing baud

LA

File Checksum
ID code check Compare File-=Device Checksum

Connection com Compate File- =Device (Complete Device)
L1l blocks nmar

Compate File- =Device (File Daka Only)
Verify that download is successful :

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 20/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Erasi ng 2 bl ocks from device
Erased bl ock EB1 (0x00008000 - Ox0000BFFF)
Erased bl ock EBO (0x0000C000 - Ox0000FFFF)

Erase conpl ete

Processing file :"C \ Renesas\ Pro-Active_K531 I NS_R8G 25\ Cut put\ Hel | oWorl d. not "
[Data Flash] - No Data Loaded
Qperation on User Flash
Witing image to device... [0x00008000 - 0Ox000099FF]
Witing imge to device... [0xO000FEOO - OxOO000FFFF]
Dat a progranmmed at the foll ow ng positions:
0x00008000 - 0x000099FF Length : 0x00001A00
0x0000FEOO - Ox0000FFFF Length : 0x00000200
7 K progranmed in 3 seconds
| mage successfully witten to device

In main menu, click, Device - Disconnect.

"?’ Projects - Flash Development Toolkit {Unsupported Freeware ¥ersio
File Edit Wiew Project Tools “Window | Dewice Help

LN .

ES | JJ e Conmect o Device ChrlH-Al+E

=M= Y Comnert

Fem(Disconneck
E...@ Projects ﬁ Erase FLASH Blacks Chrl-Al+E
El---l@ Projects 537 Blank Check Chrl+Alt+B
Ea S-Heu:-:ur F”ES 4 * Upload Image Chrl+-AlE+U

i Hella'w arld. ok -

$ Dovinload Ackive File k|5

Mifare_Senal_Encoder.r
Mifare_Serial Fieader.m ¥ FLASH Checksum (e

SeMo_Serial Feaderm 32 Go From Address. . dalle
b Seo wWiegandD atacl:
H Mme —. . - - -

i~ amealMnarakinm =kl LRra sl

Renesas R8C-25 flash has a write endurance of 100 cycles.

e

This means that you can’t reprogram your K531 more than 100 times.

4.4. TESTING OUR PROGRAM

Launch HyperTerminal or any other terminal emulation software.

Create a new connection to the serial communication port your device is
connected to. Communication parameters are :

0 38400 bps
0 8 data bits, 1 stop bit
o No parity, no flow control
Put the device back in normal operation mode.

Reset the device. The “Hello, world " string will appear :

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 21/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

"::'gz COMZ_38400 - HyperTerminal

File Edit Wiew Call Transfer Help

Hello, world !
K531 INS SDK - Build : Jan 08 2007 89:51:30

Check that device echoes back the characters entered.

4.5. WHAT’'S NEXT ?

You can modify this project to test various communication speeds. Note that any
on communication error, the UART of the device is configured again ; don’'t forget to

change baudrate in function serial 1 error_call back and not only in function
mai n.

You can also try different LEDs commands, and also change LEDs behaviour
dynamically when receiving specific characters.

Last but not least, see what happens when replacing the wat chdog_updat e()

statement in function mai n’'s for (;;) loop by a no_operation() statement (calls
NOP, i.e. does really nothing).

w All the examples written in the next chapters are based of this Helloworld
example.

You can find each source code in the HelloWorld folder, with the name
Hel | oWor | d_<Chapt er >_<Par agr aph>. c

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 22/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

5. CONTACTLESS OPERATION

5.1. ACTIVATION OF THE RC531

Currently HelloWorld project only configure the MCU. First step is to attach and
configure the NXP RC531 chipset, for actual contactless operation.

Just after sprox_hal _init(),callrc531 connect() to do so.

a. Updated code

Here’s our Hel | oWwrl d_5 1. c . We've added a few lines to test RC531 :

voi d mai n(voi d)

{
sprox_hal _init();
rc531 _connect ();
serial 1 init(38400);

(...)
/[* Get and print RC531 info */
| o e e e e ee e oo *
{

BYTE buffer[5];

SBYTE rc;

print_s("RC531");

rc = PcdGetPid(buffer); /* Retrieve product identifier */
if (rc!'=M_OK) print_d(rc, 0); /* Error */

el se

{
/* Display product identifier, 5 bytes */
print_s(" PID="); print_h(buffer, 5, FALSE);

}

rc = PcdGet Snr(buffer); /* Retrieve serial nunber */
if (rc!'=M_OK) print_d(rc, 0); /* Error */

el se

{
/* Display serial nunber, 4 bytes */
print_s(" SNR="); print_h(buffer, 4, FALSE);

}
print_s(NULL); /* Same as print_s("\r\n"); */
}

for (;;)
(...)

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 23/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

b. Test program

Build updated program, disconnect terminal session, and flash the program.
Connect again with the terminal emulator, and see new output :

RC531 PI D=30FFFFOF04 SNR=17199747

5.2. LOOKING FOR A CARD

Now before working with a contactless card, we must find it the RF field. As the
card doesn’t say “Hello, I'm new here” when it arrives, reader must perform an active
card detection, by sending repeated lookup frames. This continuous polling is the basis
of a contactless reader.

5.2.1. ISO/IEC 14443-A layer 3 activation

There are two functions to lookup for an ISO/IEC 14443-A card :

| soA Acti vat el dl e uses WUPA lookup frames, meaning that only “new”
cards will answer.

| SOA Acti vat eAny uses REQA lookup frames, meaning that the cards that
have previously been worked with and halted by the reader will answer
again.

Both functions return M _OK on success, and M _NOTAGERR when no 14443-A
card has been found in the RF field.

When result is M _OK, the identification of the card is found in global variable
i so3a_t ag, which is an | SOBA_TAG_ST structure.

a. Explanation of the | SOBA _TAG_ST structure.

Field Size (bytes) Content
atq 2 Card’s Answer To Query. This field provides information on
the type of card we’ve found.®
uid 4,7 or 12 Card’s Unique IDentifier (UID).

Size=4 for cards with a single -sized UID (Mifare 1k & 4Kk)
Size=7 for cards with a double -sized UID (Mifare UltraLight & Desfire)
Size=12 for cards with a triple-sized UID

uidlen

=

This is actual size of UID (4, 7 or 12)

sak

=

Card’s Select AKnowledge. This field tells us whether the
card supports 14443 layer 4 (“T=CL”) operation or not.

> See NXP’s application note “Mifare Interface Platform Type Identification Procedure”
At the time of writing, this document can be found online at
http://www.nxp.com/products/identification/mifare/index.html#rel

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 24/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

5.2.2. ISO/IEC 14443-B layer 4 activation

There are two functions to lookup for an ISO/IEC 14443-B card :

| soB_Acti vat el dl e uses WUPB lookup frames, meaning that only “new”
cards will answer.

| soB_Act i vat eAny uses REQB lookup frames, meaning that the cards that
have previously been worked with and halted by the reader will answer
again.

Both functions take on parameter named af i .

Both functions return M _OK on success, and M _NOTAGERR when no 14443-B
card has been found in the RF field.

When result is M _COK, the identification of the card is found in global variable
I so3b_t ag, which is an | SOBB_TAG_ST structure.

a. Explanation of the af i parameter

Since 14443-B defines a really poor anti-collision scheme compared to 14443-A,
when more than one card may be present in the RF field, it is easier to discover only the
card we want to work with than trying to discover one after the other until we find the
one we’ve been expecting.

The AFI (Application Family Identifier) represents the type of application targeted
by the reader. Only cards (and hopefully only card_) with application(s) of the type
indicated by the AFI are allowed to answer to REQB or WUPB. The list of AFls a specific
card will answer to, depends on the list of applications installed in the card.

If you want to lookup for any kind of 14443-B card, whatever the application they
provide, set parameter af i = 0.

b. Explanation of the | SO3B_TAG_ST structure.

Field Size (bytes) Content

afi 1 Reminder of the AFI the card has answered to

atq 11 Card’s Answer To Query.

4-first bytes of ATQ are named “Pseudo -Unique PICC Identifier”
(PUPI). They can either be a 4-bytes fixed serial number, or a
4-pbyte random number changing on each activation.

For explanation of the 7-next bytes, please refer to ISO/IEC
14443-3.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 25/ 60

e

SDK K531/INS
DEVELOPER'S GUIDE

5.3. WORKED EXAMPLES

5.3.1. Basis

Here’s our updated source code

Hellowrld 5 3 1.c

..)

for (53)
{
SBYTE rc;

/* Feed the watchdog */
wat chdog_updat e() ;

/* 14443-A | ookup */

rc = | soA ActivateAny();

if (rc == M_OK)

{
print_s("Found 14443-A card :\r\n");
print_s("ATQ=");
print_h(iso3a tag.atq, 2, FALSE);
print_s(" U D=");

print _h(iso3a_tag.uid, iso3a_tag.uidlen,

print_s(" SAK=");
print_h(iso3a_tag.sak, 1, FALSE);
print_s(NULL);

}

FALSE) ;

/* W nust wait at | east 5ns between each type */

sl eep_ns(5);

/| * 14443-B | ookup, AFlI = 0 (any application) */

rc = IsoB_Activat eAny(0x00);

if (rc == M_OK)

{
print_s("Found 14443-B card :\r\n");
print_s("ATQ=");
print_h(iso3b _tag.atq, 11, FALSE)
print_s(NULL);

}

/* W nust wait at | east 5nms between each type */

sl eep_ns(5);

Once a card is found (either A or B), we display its information.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA

Page : 26/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Note that we add a 5ms delays between type A and type B lookups. This is needed
because ISO/IEC 14443 allows type B cards to reset after receiving a type A modulation,
and type A cards to reset after receiving a type A modulation®. The standard allows 5ms
for card being ready after a reset’.

Here’s the output when a type A card (NXP Desfire) is put in the field :

"::'iz COM2_38400 - HyperTerminal

File Edit Wiew Call Transfer Help

Found 14443-A card :
ATO=4403 UID=045052B9B41B8O SAK=2000
Found 14443-A card :
ATO=4403 UID=045052B9B41B8A SAK=2000
Found 14443-A card :
ATO=4403 UID=045052B9B41B8A SAK=2000
Found 14443-A card :

Here’s the output when a type B card (Inseal Jaycos) is put in the field :

"::'iz COMZ_38400 - HyperTerminal
File Edit Wew Call Transfer Help

Found 14443-B card :
ATO=062E45600078FBB10A51C3
Found 14443-B card :
ATO=062E456000 /8FBB10051C3
Found 14443-B card :
ATO=062E45600078FBB10A51C3
Found 14443-B card :

Observe that in both cases the information is repeated until card is removed from
the field.

5.3.2. Type A anti-collision
Now we’ll use the type A anti-collision feature, halting the card after having found

it, and using REQA lookup instead of WUPA.
We’'ll try to do the same for type B, and check the differences.

® First case is really frequent, where the second has never been observed...

” Note that some “old” type B cards may require more than 5ms to wake-up after a field
interruption. You’ll have to adapt the timings of your reader to the requirements or the specific
cards you're working with.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 27/ 60

Rm SDK K531/INS
ctive DEVELOPER'S GUIDE
Here’s the new source code for type A :

[* 14443-A | ookup, REQA instead of WJPA */
rc = 1soA Activateldle();

if (rc == M_K
{

| soA Halt(); /* Halt the card right now */
print_s("Found 14443-A card :\r\n");

(...)

Here’s the new source code for type B :

/| * 14443-B | ookup, REQB instead of WJPB */
rc = IsoB _Activateldl e(0x00);

if (rc = M_OK

{

IsoB Halt(iso3b_tag.atq); /* Halt the card right now */
print_s("Found 14443-B card :\r\n");

(...)

Complete code isin Hel lowrld 5 3 2.c

w Type B halt command is “addressed” to one specific card, so the PUPI (4-first
bytes of ATQ) must be provided to| soB Hal t .

Type A halt command is “broadcasted”, but only the currently selected card will
accept the command, that’s why | SoA Hal t takes no parameter.

Now place a type A card in the field. The information is displayed once. Card must
be removed and put back again to have its information displayed. You can also put 2 or
3 type A cards in the field in the same time, and see that type A anti-collision allows
selecting one after the other.

Now place a type B card in the field. In most cases you'll see no difference with
last version of the program, because the type B card resets (and forgets its “halted”
state) during the type A modulation.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 28/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

6. WORKING WITH MIFARE CARDS

This chapter deals with Mifare “Standard” (or Mifare “Classic”) cards. The
examples focus on Mifare 1k, but can be extended very easily to Mifare 4k°.

6.1. RECOGNIZING MIFARE CARDS

Mifare cards can be recognized by their ATQ® :

iso3atag_atq[O] iso3atag_atq[1] Card
0x04 0x00 Mifare Standard 1k
0x02 0x00 Mifare Standard 4k

Here’s a summary of the features :

a. Mifare 1k

64 blocks of 16 bytes each, blocks O is read-only.

Card is divided into 16 sectors of 4 blocks each.

Last block of each sector (“sector’s trailer”) stores the two secret keys (key
A & key B) that protect this sector.

b. Mifare 4k

256 blocks of 16 bytes each, blocks O is read-only.

Card is divided into 32 sectors of 4 blocks each (sectors 0 to 31), followed
by 16 sectors of 16 blocks (sectors 32 to 39).

Last block of each sector (“sector’s trailer”) stores the two secret keys (key
A & key B) that protect this sector.

8 The memory mapping under 2k is exactly the same, and after 2k only the number of

blocs in a sector is different.

9 See NXP’s application note “Mifare Interface Platform Type Identification Procedure”
At the time of writing, this document can be found online at
http://www.nxp.com/products/identification/mifare/index.html#rel

This documents also specifies SAK = 0x08 for Mifare 1k and SAK = 0x18 for Mifare 4Kk.
This is true for “real” NXP Mifare cards, but you can find a different SAK when using Mifare cards
from other manufacturer (Infineon for instance) or when the card is a micro-controller smartcard,
with a Mifare emulation applet (Mifare ProX cards for instance are often programmed with a
Mifare Standard applet).

Note that this document —and a lot of documents written by Philips/NXP— considers ATQ as
a single 16-bit value (a WORD) where the reader receives 2 8-bit values (2 BYTESs). The Mifare
card is “little endian”, so LSB maps to atq[0] and MSB to atq[1].

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 29/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

6.2. READING A BLOCK

K531 INS library provides 2 functions to read one block from a Mifare card :

M f ReadW i t eBl ock(BOCL w, BYTE bl ock, BYTE data[16],
BYTE key_ val ue[6])

M f ReadW i t eBl ockK(BOOL w, BYTE bl ock, BYTE data[16],
BYTE key_i dent)

In both functions the w parameter must be set to FALSE'®. The bl ock parameter
is the address of the block to be read (O to 63 for Mifare 1k, O to 255 for Mifare 4k) ; on

success (function returning M _OK) the dat a buffer will receive the actual data read
from the card.

Thanks to Mifare security scheme, reading a block is only possible after a
successful authentication, and communication is ciphered. Authentication is performed
over the next security block (or sector’s trailer) to be found after the specified bl ock,
and using a “secret” key.

Next paragraph provides details on Mifare keys.

w Type B “halt” command (HLTB) is “addressed” to one specific card, so the PUPI
(4-first bytes of ATQ) must be provided tol soB _Hal t .

Type A “halt” command (HLTA) is “broadcasted”, but only the currently selected
card will accept the command, that’s why | soB_Hal t takes no parameter.

6.3. MIFARE ACCESS KEYS

Two keys protect each sector in a card :
Key A is commonly used for read-only access,
Key B is commonly used for read & write access.
Each key is a 6-byte value (48 bits)'".

When reader wants to read one block, it must know either key A or key B of the
sector this block belongs to.

10 set it to TRUE if you want to write the block instead of reading it.

11 Although NXP documentation tells that Mifare is a “secure” contactless card, 48-bit keys
are nowadays considered as really weak compared to 112 or 128-bit keys that are commonly
used in 3-DES or AES operation. More than that, the CRYPTOL1l security scheme used in Mifare
authentication and secure communication is a proprietary algorithm, and nobody really knows
how secure it really is. Anyway, in most “real-life” cases (access control, identification, ...) where
price of the solution is an important concern, the security level of Mifare cards & readers can be
considered as really good compared to other solutions in the same range of prices (125kHz tags,
13.56MHz memory cards with no security at all...)

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 30/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

6.3.1. Storing the keys in program

The easiest solution is to store the key in program, and to provide it to
M f ReadBl ock function :

static const BYTE ny_key[6] = {0x12, 0x34, 0x56, 0x78, O0x9A, 0xBC} ;

(...)

SBYTE rc = MfWiteReadBl ock(FALSE, 4, data, ny_key);
if (rc == M_OK)

/* Block 4 has been read !!!l */
print_h(data, 16, FALSE);
(...)

When called with a non-NULL key_val ue parameter, function
M f ReadW i t eBl ock tries the specified key as a key A, and only on failure as a key B.

\“_@ It is technically possible to read sector’s trailer (blocks 3, 7, ...), but this is not
really interesting since access keys are “masked” by the card (read as 0x00 ...
whatever their value).

6.3.2. Using RC531’s secure EEPROM

Thankfully, the RC531 chip has an internal secure non-volatile memory, where
keys can be stored. The memory is said “secure” because one can write the keys in it,
but never read them back (so the secret key is really secret).

Using the RC531 to store the key(s) has two interests :
A stolen reader is no more a security concern ;

The developer can test the application without any knowledge of the key.
This is really interesting when the application is developed by a third-party ;
actual Mifare key will be loaded only at deployment time, and will remains
unknown from the third-party.

The counterpart is that one need to implement a mean of loading the keys into the
RC531'?, either from serial line or through a configuration card*®.

12 Having the embedded software loading the key at first boot is just kidding... Key is still
to be found in source code and in binary dump...

13 Well... Now you must find a way of securing the configuration cards, because they hold
the key and because a forged configuration card will make your readers unusable...

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 31/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

a. Without selection

Once the key(s) are loaded into RC531’s secure EEPROM, reading is possible
without specifying the key :

C..)

/* Note the NULL key : */
SBYTE rc = MfWiteReadBl ock(FALSE, 4, data, NULL);

iIf (rc == M _OK)
/* Block 4 has been read !l */
print_h(data, 16, FALSE);
(...)

When called with a NULL key_val ue parameter, function M f ReadW i t eBl ock
will execute the following procedure :

Tries sequentially all A keys from RC531’s EEPROM, until one matches,

If read all A keys have failed, tries sequentially all B keys, until one
matches.

This is interesting for developer because it is easy to implement and because he
doesn’t need to know at design time which key index will actually be used, but leads to
two issues :

Since the RC531 has 16 A keys and 16 B keys, the complete procedure can
take “a lot of time” before returning (namely 400ms if matching key is B
15).

If read is successful, developer knows that the authentication has been
successfully passed, but he doesn’t know which key has been used. This is a
potential security issue since a card may be read with a different key than
the one specified.

b. With forced key selection

Using the M f ReadW i t eBl ockK function, developer can specify which key index
he wants to use for each particular block, thus knowing for sure the sector has been
formatted with the expected key.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 32/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

(...)
SBYTE rc = M fReadW it eBl ockK(FALSE, 25, dat a,

M F_E2 KEY| M F_KEY_A| 0x07) ;
If (rc == M_OK)

/* Block 25 has been read with key A 7 from EEPROM */
print_h(data, 16, FALSE);

(...)

The key i dent parameter is a bit OR of :
Constant M F_E2_ KEY to select RC531’s EEPROM,
Type of key is either M F_KEY_Aor M F_KEY_B,
Key index, from O to 15 (Ox00 to OxOF).

6.4. \WORKED EXAMPLE

This example reads (and displays) content of block 25 with any of the EEPROM
keys (no selection).

Hel lowrld 6 4.c

a. Pre-loading the keys

We want to read the Mifare cards provided with the SDK. The card comes from
manufacturer in a “transport” state that must be documented by the manufacturer. We
assume they are in one of those two states :

NXP configuration : key A is { OxFF,0xFF,0xFF,0xFF,0xFF,OxFF } for every
sector,

Infineon configuration : key A is { OxAO0,0xA1,0xA2,0xA3,0xA4,0xA5 } for
every sector.

So our program has to preload both keys to RC531’s EEPROM (remember, this is
not a good idea, actual keys must be loaded on-the-field over the serial line or through a
configuration card). This is done once at the beginning.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 33/ 60

e

SDK K531/INS
DEVELOPER'S GUIDE

static const BYTE key_ FF[6]
static const BYTE key_ AXx[6]

(...)

/* Store

{ OXFF, OxFF, OxFF, OXFF, OxFF, OxFF} ;
{ OxA0, OxAl1, OxA2, 0xA3, OxA4, OxA5} ;

key FF as key A, index 0 */

M 500PcdLoadKeyE2(Pl CC_AUTHENT1A, 0, key FF);

/* Store

key Ax as key A, index 1 */

M 500PcdLoadKeyE2(Pl CC_AUTHENT1A, 1, key AX);

b. Updated 14443-A lookup code

rc = | soA Activateldl e();
if (rc == M_OK)
{
print_s("Found 14443-A card :\r\n");
print_s("ATQ=");
print_h(iso3a_tag.atq, 2, FALSE);
print_s(" U D=");
print_h(iso3a_tag.uid, iso3a_tag.uidlen, FALSE);
print_s(" SAK=");
print_h(iso3a_tag.sak, 1, FALSE);
print_s(NULL);
/* Is this a Mfare card ?*/
if ((iso3a_tag.atq[l] == 0x00)
&% ((iso3a_tag.atg[0] == 0x02)
|| (iso3a_tag.atq[0] == 0x04)))
{
BYTE dat a[16] ;
/* Yes | */
if (iso3a_tag.atg[0] == 0x04) print_s("Mfare 1k\r\n");
if (iso3a_tag.atq[0] == 0x02) print_s("Mfare 4k\r\n");
/* Read block 4 with any of the EEPROM keys */
rc = MfReadWiteBl ock(FALSE, 4, data, NULL);
If (rc == M_OK)
{
print_h(data, 16, FALSE);
print_s(NULL);
}
}
/* Halt the card only after Mfare processing */
| sOA Halt();
}

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA

Page : 34/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

C. Output

Content of block 4 is displayed (out-of-factory cards come with all data set to
0x00, or sometimes with all data set to OxFF) :

+g COMZ_38400 - HyperTerminal
File Edit Wiew Call Transfer Help

Found 14443-A card :

ATO=0400 UID=F425888A SAK=0800
Mifare 1k
ARNPPABNNAAANRRRRRBBBRRBRRRRARAG

6.5. GOING FURTHER

6.5.1. Writing data into the card

‘\;\g Never write any sector’s trailer (blocks 3, 7, ...) as you will overwrite sector’s

access keys and access conditions with your data. Setting invalid access

conditions or forgetting the access keys permanently prevent any access to the
sector !

In this example we read blocks 4 and 5, display both of them, and rewrite block 5
after altering its content. We need to preload the right B keys into RC531’'s EEPROM if
we want the operation to succeed.

Hellowbrld 6 5 1.c

a. Preloading the keys

static const BYTE key_ Bx[6] = {0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5} ;

(...)

/* Store key FF as key B, index 0 */
M 500PcdLoadKeyE2(PI CC_AUTHENT1B, 0, key FF);

/* Store key Bx as key B, index 1 */
M 500PcdLoadKeyE2(PI CC_AUTHENT1B, 1, key_ Bx);

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 35/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

b. Updated Mifare lookup code

rc = | soA Activateldle();
if (rc == M_OK)
{

(...)

/* Is this a Mfare card ?*/
if ((iso3a_tag.atq[l] == 0x00)
&% ((iso3a_tag.atqg[0] == 0x02)
|| (iso3a_tag.atq[0] == 0x04)))

{
(...)

/* Read and display block 4 */
rc = MfReadWiteBl ock(FALSE, 4, data, NULL);
(...)

/* Read and display block 5 */
rc = MfReadWiteBl ock(FALSE, 4, data, NULL);

(...)
/* Do some changes in block 5 */
dat a[0] ++; data[15] ++; data[1l]--; data[14]--;

/* Wite back block 5 with any of the EEPROM keys */
rc = MfReadWiteBl ock(TRUE, 5, data, NULL);
If (rc!'=M_OK)

print_s("Failed to rewite block 5");

/* Halt the card only after Mfare processing */
| soA Hal t();
}

C. Output

Content of block 5 is now displayed after content of block 4.

Note that content of block 5 is different every time we put the card on the
antenna.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 36/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

"=:',§: COMZ_38400 - HyperTerminal
File Edit Wiew Call Transfer Help

Mifare 1k
0PP10143000101430001014300010143
APBRROONABRRONRABRRBLONBRRRROOAA
Found 14443-A card :

ATO=0480 UID=F425888A SAK=0800
Mifare 1k
ABP101430001014300010143000160143
A1FFBOORABBRODRABRRRRONABRRRRFFA1
Found 14443-A card :

ATO=0480 UID=F425888A SAK=0800
Mifare 1k
ABP1014300010143000160143000160143
A2FERBOPABBOOORABBRBOORBRBRRFERZ
Found 14443-A card :

ATO=0400 UID=F425888A SAK=0800
Mifare 1k
ABP10143000101430001614300016143
03FDOOANEBRRONARBROOOONBBRRBFDA3
Found 14443-A card :

ATO=0400 UID=F425888A SAK=0800
Mifare 1k
APP1P1430001014300010143000160143
B4FCHOONOBRRONNABRODDONORRRAFCHL

a |

(Coninected 00:00:20 ARSIV [34008-M-1 [SCROLL [CAPS [nuw

6.5.2. The Mifare Application Directory (MAD)

Up to now, we’ve considered that data are always located at the same place in the
card (static mapping to a defined block). This is all right in most situations, but
sometimes we have to “share” the card along different kind of readers and applications,
with flexibility and expandability for adding data in the future.

The Mifare Application Directory (MAD) concept defines how a dynamic card
mapping can be implemented, using sector O (blocks 1 and 2) as a “directory” telling the
reader where each data is located in the card.

For more information, read NXP’s document “Mifare Application Directory”™* or
review case studies at www.mifare.net .

14 At the time of writing, this document can be found online at
http://www.nxp.com/products/identification/mifare/index.html#rel

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 37/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

6.5.3. Working with one sector at once

Block read (and write) functions work with 16 bytes of data.
Following functions are suitable to read (and write) one full sector at once :

M f ReadWiteSect (BOOL w, BYTE addr, BYTE data[],
BYTE key_val ue[6])

M f ReadW it eSect K(BOOL w, BYTE addr, BYTE data[],
BYTE key_ident)

Be careful that on Mifare 4k cards there’re two different sector size (and therefore
two different buffer size for the dat a parameter) : sectors O to 31 are made of 3 data
blocks (+ 1 block for sector’s trailer), i.e. 48 bytes, where sectors 32 to 39 are made of
15 data blocks (+ 1 block for sector’s trailer), i.e. 240 bytes.

On Mifare 1k all sectors are 48 bytes.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 38/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

7. WORKING WITH T=CL CARDS

ISO/IEC 14443 layer 4 is often named “T=CL protocol”, after “T=0" and “T=1"
smartcard asynchronous serial protocols. This implies that the application may exchange
frames with the card, without any specific processing by the reader*®.

In our case, the application is physically running inside the reader, but this doesn’t
make a difference...

7.1. ENTERING ISO/IEC 14443 LAYER 4

7.1.1. Type A

14443-A T=CL card are recognized by bit 5 being set in SAK. To enable T=CL
communication with the card, the reader shall send a “select” frame, to which the card
answer with its Answer To Select (ATS).

More than one T=CL card may be selected at the same time by the application,
using a short Card IDentifier (CID). In this chapter, we limit us to a single card. CID will
be fixed to OxFF (“CID not used” reserved value).

Here’s the code for T=CL activation of a type A card :

I f (iso3a_tag.sak[0] & 0x20)

/* Card is T=CL conpliant */
rc = Tcl A Get Ats(OxFF, NULL, NULL);
}

Complete prototype of Tcl A Get Ats is :
Tcl A Get Ats(BYTE cid, BYTE ats[], BYTE *atslen)

You can use the at s parameter to retrieve card’s Answer To Select (this is more
or less the equivalent of the ATR of a T=0 or T=1 contact smartcard).

7.1.2. Type B

14443-B T=CL card are recognized by bit O of byte 9 being set in ATQ. To enable
T=CL communication with the card, the reader shall send an “attrib” frame.

Once again, more than one T=CL card may be selected at the same time by the
application, using a short Card IDentifier (CID). We limit us to CID = OxFF (“CID not
used” reserved value).

15 Different from Mifare mode where the application relies on the reader —on the RC531,
actually— to perform on-the-fly CRYPTO1 ciphering and de-ciphering.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 39/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Here’s the code for T=CL activation of a type B card :

i f (iso3b_tag.atqg[9] & 0x01)

[* Card is T=CL conpliant */
rc = TclB Attri b(OxFF, iso3b tag.atq);
}

w Type B “attrib” command (ATTRIB) is “addressed” to one specific card, so card’s
PUPI (4-first bytes of ATQ) must be provided to Tcl B_Attrib.

Type A “get ATS” command is “broadcasted”, but only the currently selected card
will accept the command, that’s why Tcl A Hal t doesn’t need card’s UID.

7.2. EXCHANGING FRAMES WITH THE CARD

Once a T=CL card has been selected, exchanging frames with it is as easy as
calling Tcl _Exchange, whatever the type of the card.

Here’s the prototype :

Tcl _Exchange(BYTE ci d,
BYTE send_buffer[],
WORD send_| en,
BYTE recv_buffer[],
WORD *recv_|l en);
In our examples ci d will be fixed to OxFF. send | en (and *recv_| en) are
limited only by reader’s memory and by card’s in/out buffer —the second being often
shorter than the first.

é’ According to the OSI model, the Tcl Exchange is on top of the stack,
implementing a dialog reader application €<-> card application. Size of frames at
this level is limited only by application specifications and available memory.

Lower layers in the stack may use shorter buffers ; in this case the application
buffer must be split in one or more smaller frames.

Upon transmit, this is done automatically by K531 INS library, according to the
size of receive buffer asserted by the card (value to be retrieved from ATS or

ATQ).

In the other way, the reader is able to accept 256 bytes at once (maximum
specified by 1SO), but can also merge transparently the incoming frames split by
a card having a too short transmit buffer.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 40/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

7.2.1. ISO/IEC 7816 commands and APDUs

As ISO/IEC 14443-4 is the contactless equivalent of ISO/IEC 7816-3 T=1 protocol,
most card manufacturers and/or card application designers implement ISO/IEC 7816-4
commands and T=1 formatted APDU in their card and/or applets*®.

Using ISO/IEC 7816 formalism, we can understand send_buf f er as follow :

Case 1 APDU
Offset 0 1 2 3
Iltem CLA |INS |P1 P2
Case 2 APDU
Offset 0] 1 2 3 4
Item CLA |INS |P1 P2 Le
Case 3 APDU
Offset 0 1 2 3 4 5tosend_l en-2
Item CLA |INS |P1 p2 Lc Data
Case 4 APDU
Offset 0 1 2 3 4 5tosend | en-2 send_| en-1
Item CLA |INS |P1 P2 Lc Data Le

Using ISO/IEC 7816 formalism, we can understand r ecv_buf f er as follow :

Offset O to *recv_| en-2 *recv_|len-2 [*recv_| en-1

Item Data SW1 SW2

é’ Mapping of APDUs into T=CL frames is not clearly specified, and handling tge Lt
byte appears to vary along applet developers.

We’'ve seen some cards where Llg is ignored (case 2 being equivalent to case 1,
case 4 being equivalent to case 3, both returning a variable length answer), some
others where L must be removed in cases 2 and 4 (card always returns a variable
length answer, and returns an error when Lg is provided), and some others working
like T=0 cards (case 4 not allowed).

When working with a “7816-4 compliant” T=CL card, read carefully its
documentation, looking for any precision regarding the mapping of APDUSs.

Don’t be surprise to receive more than Lg +2 bytes, and size r ecv_buf f er in order

to allow it. Keep in mind that Le=0x00 can be understood either as “256 bytes” or
as “any length up to 256 bytes”.

16 |SO/IEC 7816-4 “interindustry command for interchange” defines a basic command set
for smartcards providing a file-system feature (directory and files selection, read and write into
files) and secure communication.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 41/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

7.2.2. Other frame formats

Some card manufacturers and/or card application designers choose to provide
their own list of commands, with their own proprietary format, instead of using 7816-4
command set and APDU formalism.

For instance, NXP Desfire card use the following model :
Application - card (send_buf fer)

Offset 0 1tosend | en-1

Item Command| Data

Card - application (recv_buffer)

Offset 0 lto*recv_len-1

Item Status SwWi

él When working with such a proprietary protocol, pay a lot of attention to examples

provided by card’s developer. Try to prototype the application on PC with a

desktop contactless reader. It will always be a gain of time, since debugging is
virtually impossible in the K531.

7.2.3. Closing communication correctly

Once a card has entered 14443-4 layer, it remains active until you Deselect it,
where it goes back into the Halted state (same as | SOA Halt and | soB Hal t when
card is still at 14443-3 layer).

The Deselect function is :
Tcl _Desel ect (BYTE ci d)

&\/\g You must Deselect the card you’re working with before trying to activate another
card with the same CID, even if you assume that the card has been removed
from the RF field.

TclA_GetAts and TcIB_Attrib will fail with error TCL_ClI D _ACTI VE if their ci d
parameter references a card that hasn’t been Deselect.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 42/ 60

e

SDK K531/INS
DEVELOPER'S GUIDE

7.3. DESFIRE EXAMPLE

As the Desfire cards supplied in the SDK are “blank”, we limit us to the Desfire
“GetVersion” command, which returns 28 bytes of data, split into 3 frames'’.

Reading data from a file on the card will use a different command sequence, but

there’s no difference in the method.

a. Source code

Hel lowrld 7 3.c

/[* Is this a Desfire card ? */
if ((iso3a_tag.atqg[l] == 0x03)
&& (iso3a_tag.atq[0] == 0x44))
{
BYTE send_buffer[1];
BYTE recv_buffer[24];
WORD recv_| en;

/* Yes | */
print_s("Desfire\r\n");

/* Enter T=CL | ayer */

rc = Tcl A Get At s(OxFF, NULL, NULL);
if (rc == M_OXK

{

/* Send the GetVersion conmand */
send_buffer[0] = 0x60;
recv_len = sizeof(recv_buffer);

rc = Tcl _Exchange(OxFF, send_buffer, 1,

recv_buffer, & ecv_|len);

if ((rc == M_OK) && (recv_buffer[0] ==

{
/* First exchange K

OXAF))

status is "OK, another frane to foll ow' */

print_h(&ecv_buffer[1l], recv_len-1,
print_s(NULL);

/* Ask for second franme */

send _buffer[0] = OxAF;

recv_len = sizeof(recv_buffer);

rc = Tcl _Exchange(OxFF, send_buffer,
recv_buffer,

if ((rc == M_OK) && (recv_buffer[O0]

{

FALSE) ;

1,
& ecv_len);
== OxAF))

17 please refer to NXP’s Desfire datasheet v3.1, paragraph 4.4.6, for details.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA

Page : 43/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

/* Second exchange K
status is "OK, another frane to foll ow */

print_h(& ecv_buffer[1], recv_len-1, FALSE);
print_s(NULL);

/* Ask for last frame */

send_buffer[0] = OxAF;

recv_| en = sizeof(recv_buffer);

rc = Tcl _Exchange(OxFF, send _buffer, 1,
recv_buffer, & ecv_len);

if ((rc == M_OK) && (recv_buffer[0] == 0x00))

[* Third exchange K
status is "OK, termnated" */
print_h(& ecv_buffer[1l], recv_len-1, FALSE);
print_s(NULL);
}
}
}

/* Deselect the Desfire card */
Tcl _Desel ect (OxFF) ;
}

} else

/* Not a Desfire card, halt it right now */
| sOA Halt();

}

b. Output

"’:'i: COMZ_38400 - HyperTerminal
File Edit Wiew Call Transfer Help

Found 14443-A card :

ATO=4403 UID=P45052B9B41B8OG SAK=2000
Desfire

A40101008218605

A40101008618605
045052B9B41B8OSES65961004405

A few explanations :

First frame is “hardware information”. It starts with Vendor ID = 0x04.
That’s NXP —formerly Philips Semiconductors—. Hardware release is 0.2 .

Second frame is “software information”. Again, it starts with Vendor ID =
0x04. Software release is 0.6 (“Desfire v6” card).

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 44/ 60

SDK K531/INS

Rctive DEVELOPER'S GUIDE

Last frame contains UID, batch number, and production

information.

Observe that the 7-bytes UID also starts with 0x04, meaning that the card

has been assigned its UID by NXP...

7.4. JAYCOS EXAMPLE

As the Jaycos cards supplied in the SDK are “blank”, we limit us to
“GetATR” and “GetChipNumber” commands®®.

the Jaycos

Reading data from a file on the card will use a different command sequence, but

there’s no difference in the method.

a. Source code

Hel loworlid 7 4.c

rc = IsoB Activatel dl e(0x00);

if (rc == M_OK)

{
print_s("Found 14443-B card :\r\n");
print_s("ATQ=");
print_h(iso3b_tag.atq, 11, FALSE);
print_s(NULL);

/* Note : we can’t guess from ATQ only whet her
the card is a Jaycos or sonething else */

/* Enter T=CL |ayer */
rc = Tcl B_Attrib(OxFF, iso3b_tag.atq);
if (rc == M_CK)
{
BYTE send_buffer[5];
BYTE recv_buffer[32];
WORD recv_| en;

/* GetAtr APDU */
send_buffer[0]
send_buffer[1]
send_buffer|[2]

0x80; /* CLA */

OXEC;, /* INS */

0x00; /* P1L */

send_buffer[3] 0x00; /* P2 */

send_buf fer[4] 0x0C, /* Le */

recv_| en = sizeof(recv_buffer);

rc = Tcl _Exchange(OxFF, send _buffer, 5,
recv_buffer, & ecv_len)

if ((rc == M_CK)
&& (recv_len >= 2)
&% (recv_buffer[recv_len-2] == 0x90)

18 please refer to Inseal’s Jaycos user guide v.AE, paragraphs 3.2.13 & 3.2.14, for details.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA

Page : 45/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

&% (recv_buffer[recv_len-1] == 0x00))
{
/ * Exchange OK, SW= 90 00 */
print_h(recv_buffer, recv_|len-2, FALSE);
print _s(NULL);

/* Note : here we can consider that the card
is actually a Jaycos, because the command
CLA=0x80 | NS=OxEC isn't standard */

/ * Get Chi pNunber APDU */

send_buffer[0] 0xBO; /* CLA */

send_buffer[1] OXEE; /* INS */

send_buffer[2] 0x00; /* P1 */

send_buffer[3] 0x00; /* P2 */

send_buffer[4] 0x08; /* Le */

recv_len = sizeof(recv_buffer);

rc = Tcl _Exchange(OxFF, send_buffer, 5,

recv_buffer, & ecv_|len);

if ((rc == M_CK)

&% (recv_len >= 2)

&% (recv_buffer[recv_len-2] == 0x90)
&% (recv_buffer[recv_len-1] == 0x00))

/* Exchange OK, SW= 90 00 */
print_h(recv_buffer, recv_len-2, FALSE);
print_s(NULL);

}

/| * Deselect the card */
Tcl _Desel ect (OxFF);

b. Output

"::'g: COMZ_38400 - HyperTerminal
File Edit Wew Call Transfer Help

Found 14443-B card :
AT)=06BEA6600078FBB1BB51C3
3B69000000640125010A809000
A6BEA66050134F00

A few explanations :

First frame is the ATR of the card (Answer To Reset that is sent by the card
when powered on by a “contact” smartcard reader). Observe that the ATR
itself ends with 9000, so the GetAtr APDU response ends with 90009000.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 46/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Second frame is the serial number of the card. It is 8 bytes long. Note that
the 4 first bytes are used as PUPI in ATQ.

7.5. GOING FURTHER

7.5.1. Reading interesting data

Both examples studied here have read intrinsic data, that are available in the
cards even when there’re still blank. Of course a “real-life” reader application will have to
access data stored in one or more files from the card.

The concept it always the same :
Use layer 3 activation commands to discover the card(s) in the RF field,
Try to recognize the card from its ATQ when possible,
Enter layer 4 (T=CL),

Select the file and fetch the data using APDUs or proprietary commands,
depending on the card itself,

Deselect the card when done.

% Pay attention here to end-user experience in front of the reader. There’s no such
an unpleasant think as having to remove the card from the field and insert it back
later, to overcome a communication error.

You must be really strict on error detection, and recognize the two different
cases :

Card communication error: keep trying silently until success or card
removed,

Card not correctly formatted, or invalid data read from the card : exit
immediately, report a fatal error on LED and/or buzzer,

7.5.2. Trying to get secure...

Dialog between reader and T=CL card is not authenticated and not ciphered. If
security is needed, it must be provided by an higher layer.

Here’s a short list of possibilities in this domain :

Implement a symmetric cipher algorithm in the reader'®, and use it for
dynamic authentication®® and secure communication,

19 Due to a limited ROM size, implementing DES, 3DES or AES in K531 will be really
difficult, but a few tiny algorithms provide a decent security level (at least equivalent to Mifare
CRYPTO1) and can be feat in the available ROM. Also consider switching to Pro-Active’s K632
module (with embedded 3- DES and MD5 operators).

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 47/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

Read a static signature from the card together with the data. Send card’s
UID, card’s data and static signature to the host. Let host verify the
signature®*,

Generate a (pseudo)random number (nonce) in the reader, ask card to
dynamically sign this number. Send reader’'s nonce, card’s data and
dynamic signature to the host. Let host verify the signature®.

20 In this case we’ll also have to store the keys inside the reader, this is generally speaking
not a good idea...

21 This is a commonly used scheme, even on Mifare cards, built on RSA or Elliptic Curves
asymmetric signature algorithms. Security relies on UID being actually unique, that may be
discussed.

22 This is also a commonly used scheme, typically by payment cards. The signature
algorithm can be any kind of MAC computation (Message Authentication Code), built either on a
symmetric cipher (DES, 3-DES, AES, ...)) or on an hash functions (MD5, SHA, ...).

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 48/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

8. OTHER FEATURES

8.1. DRIVING LEDs

Use function set | eds to configure the LED outputs.

The function accepts 3 parameters, for 3 LEDs : red, green and yellow. Red and
green LEDs have their own output pins (17 & 18). Yellow LED is supposed to be bound to
“user” pin (14).

Values for each parameter can be :
LED _OFF : LED remains OFF (high level on the output pin),
LED _ON : LED remains ON (low level on the output pin),
LED_FAST : fast blinking,
LED_SLOW: slow blinking,
LED HEART : “hear beat” blinking,
LED DI SABLED : do not drive the LED output.

&j‘g Never call set | eds with a value different than LED DI SABLED for yellow LED if
you work with “user” pin either as general purpose 1/0 or as RS485 driver control
line.

8.2. THEUSER I/O PIN

Use function get _user to configure the “user” pin (14) as input, and read
its input level.

Use function set _user to configure the “user” pin (14) as output and
define its output level.

‘\JC K531 INS library maps yellow LED to “user” pin.

AN
Never call set | eds with a value different than LED DI SABLED for yellow LED if
you work with “user” pin as general purpose 1/0 and not as yellow LED.

/AN

‘\.'4 K531 INS library maps RS485 driver control to “user” pin.

Never call set _rs485 if you work with “user” pin as general purpose 1/0 and not
as RS485 driver control.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 49/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

8.3. THEMODE I/O PIN

Use function get _node to configure the “mode” pin (16) as input, and read
its input level.

Use function set node to configure the “mode” pin (16) as output and
define its output level.

w On IWM-K531 reader, “mode” pin is an output that drives the buzzer.

8.4. WORKING WITH TIMERS

As seen in 3.2.2, the K531 INS library provides an easy way to implement
timers, with a millisecond resolution.

If this example, we use 2 timers to perform some action on the LEDs :

When a 14443-A card is found, we switch green LED ON and launch a fast
blinker on yellow LED, both for 3 seconds. Red LED resume its “heart-beat”
after 10s.

When a 14443-B card is found, we do the exactly same, but with a slow
blinker on yellow LED.

Hel |l oWworl d_8 4.c

static DAORD led tnr_1, led tnr_2;
voi d mai n(voi d)
{
(...)
for (53)
{
(...)

| * 14443-A | ookup */
rc = 1soA ActivateAny();
if (rc == M_OK)

/| * 14443- A LED sequence */
set | eds(LED_OFF, LED ON, LED FAST);

led tnmr_1 = tinmeout _init(3000); /* 3000ns = 3s */
led tnr_2 = timeout _init(10000); /* 10000nms = 10s */
}
(...)

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 50/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

/| * 14443-B | ookup, AFI = 0 (any application) */
rc = IsoB_Activat eAny(0x00);
if (rc == M_OK)

/| * 14443- B LED sequence */
set | eds(LED OFF, LED ON, LED SLOW;

led tnr_1 = tineout init(3000); /* 3000ns = 3s */
led tnr_2 = tinmeout init(10000); /* 10000nms = 10s */
}

/* Check if a timer has expired */
if (timeout_expired(led tnr_1))

/* Stop green & yellow LEDs */
set | eds(LED | GNORE, LED OFF, LED OFF);
led tnr_1 = tinmeout Kkill();

}
if (timeout_expired(led_tnr_2))

[* Start "heart-beat" on red LED */
set | eds(LED HEART, LED | GNORE, LED | GNORE);
led tnt 2 = tinmeout Kkill();

}

8.5. DATACLOCK OUTPUT

K531 can be used to build a Dataclock reader. The Dataclock pins are multiplexed
with the RX/TX pins of the serial line.

In this mode, pin “TX” (12) is the CLOCK line, and pin “RX” (11) the DATA line.
Both lines are active low.

‘\7\& Since Dataclock outputs are multiplexed with UART, never call print _s or alike
function, nor seri al _1 send_byt e when implementing a Dataclock reader.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 51/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

a. Dataclock functions

Use function dat acl ock_out to send a decimal sequence on Dataclock
outputs®®.

Use dat acl ock_out _dw to send a DWORD (32 bits number) on Dataclock
outputs®*.

b. Dataclock frame format

Both functions provides a valid 1SO2 Dataclock frame, i.e. a frame starting with 16
dummy O bits for synchronisation, the Start Of Frame marker (0xB), and terminated by

the End Of Frame marker (OxF) followed by the checksum (LRC). Inside the frame, a
parity bit is added after each digit.

C. Dataclock data flow

data stream 0 0 1 0 1 1 0

DATA

Hi —

Lo

CLOCK

ATt

23 The 1SO2 Dataclock standard allows only BCD data (i.e. bytes where both nibbles are
between 0 and 9). The sequence to be sent must be a valid BCD string :

dat acl ock_out ("0123456789") is correct,

dat acl ock_out (" 0123456789ABCDEF") is incorrect (values OXA to OxF will
be replaced by Dataclock separator 0xD,

datacl ock_out ("GH...") is forbidden and will produce an unspecified
output.

24 sjze of output is exactly 10-decimal digits. For instance, DWORD value 0x001234AB
(1193131 in decimal) will be transmitted as “0001193131".

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 52/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

d. Dataclock bit format and timings

Total bit duration

1.00ms +/- 10% Next bit
DATA
Hi X X
Lo
CLOCK
Hi — —— —
Lo

Attack guard time Clock pulse time Decay guard time
0.33ms +/- 10% 0.33ms +/- 10% 0.33ms +/- 10%

The default timings can be modified using function dat acl ock_set _ti m ng (this
function takes only one parameter ; the 3 times are always equals to keep the cyclic
ratio at 1/3).

8.6. WIEGAND OUTPUT

K531 can be used to build a Wiegand reader. The Wiegand pins are multiplexed
with the RX/TX pins of the serial line.

In this mode, pin “TX” (12) is the DATAL1 line, and pin “RX” (11) the DATAO line.
Both lines are active low.

Lz Since Wiegand outputs are multiplexed with UART, never call print_s or alike
function, nor seri al _1 send_byt e when implementing a Wiegand reader.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 53/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

a. Wiegand functions

Use function wi egand_out to send an hexadecimal sequence on Wiegand
outputs®®.

Use wi egand_out _ex to send an arbitrary buffer on Wiegand outputs®®.

b. Wiegand frame format

There’s no frame marker, no parity bits, no checksum.

If you need a specific frame format, use W egand_out ex with a properly
formatted buffer.

c. Wiegand data flow

data stream 0 0 1 0 1 1 0

DATA O
Hi |_|
Lo +—4
DATA 1

gl |

d. Wiegand bit format and timings

DATA O Total bit duration
or DATA 1 1.00ms +/- 10% Next bit
Hi r-—
|
1 !
Pulse time Guard time
0.10ms +/- 10% 0.90ms +/- 10%

The default timings can be modified using function wi egand_set _ti m ng.

2% The sequence to be sent must be a valid BCD or Hexadecimal string :

wi egand_out (" 0123456789") is correct,

w egand_out (" 0123456789ABCDEF") is correct,

wi egand_out ("GH. .. ") is forbidden and will produce an unspecified output.
2% calling Wi egand_out _ex("123ABZ", 6) is exactly the same
as calling W egand_out (" 31323341425A") .

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 54/ 60

Rm SDK K531/INS
ctive DEVELOPER'S GUIDE

8.7. STORING NON-VOLATILE DATA

8.7.1. In the RC531

We’'ve seen in “Mifare” chapter that access key can be stored in RC531’s EEPROM.
This chip also provides 4 bytes of “free” EEPROM that may be used to store a 32-bit

value (4 bytes).
Use function PcdGet E2Dat a to read this value,

Use function PcdSet E2Dat a to write this value.

8.7.2. In R8C-25's data flash

R8C-25 features a 2kB flash memory dedicated to data storage. K531 INS
library makes it available under the name “FEED” (Flash Emulating EEPROM for Data).
The FEED can be seen as a list where persistent data can be inserted —and retrieve— by

their line index (or item identifier).

Up to 254 items can be stored in the FEED. Each item can occupy any size
between 1 and 32 bytes.

Use function f eed_r ead to read a, item from the list,

Use function f eed_wri t e to insert or update an item in the list,

Use function f eed_er ase to remove one item from the list.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 55/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

9. IMPLEMENTING A “CONSOLE” ON THE SERIAL LINE

The code provided here is based on the “Helloworld” sample. The key concept is
to separate the receive interrupt handler (serial _1 recv_call back) from the
command processor (in mai n). Do to so, we use a shared buffer (recv_buffer) and a
shared boolean variable (r ecv_r eady).

a. Updated mai n code

char recv_buffer[64];
vol atil e BOOL recv_ready;

voi d mai n(voi d)
{
(...)
for (57)
{
(...)

/* Sonmething received on serial line ? */
if (recv_ready && strlen(recv_buffer))
{ /* Dummy consol e processor,
just echo back the command... */
print_s("You' ve entered : \"");
print_s(recv_buffer);
print_s("\"\r\n");
recv_buffer[0] = "\0";
recv_ready = FALSE;

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 56 / 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

b. Updatedserial 1 recv_call back code

void serial _1 recv_call back(BYTE r)

{

int | = strlen(recv_buffer);

if ((r =="\r") || (r =="\n"))
{
/* CR or LF -> ready to process the conmand */
recv_ready = TRUE;
/* Echo : send CR/LF */
print_s(NULL);
} else
if (r == 0x08)

/| * Backspace */
if (I >0

recv_buffer[--1] = "\0";
print_b(r); print_b(" "); print_b(r);

} else
if (I < sizeof(recv_buffer)-1)
{ /* Enqueue in buffer */
recv_buffer[l] =r,;
recv_buffer[l+1] = "\0";
/* Echo */
print_b(r);

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 57/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

10. OTHER SAMPLE INCLUDED IN THE SDK

a. Serno_Serial_Reader

This project is not really different from what we’ve seen in chapter 5. It
implements a basic card lookup, and sends the information over the serial line.

There are 2 noticeable points anyway :

We add a 1s (1000ms) delay between two consecutive outputs on serial
line.

This is a typical value in practical applications, where the receiver (access
control device, cash-machine, ...) is unable to process more than one “tag”
at a time.

We switch OFF the RF field between two consecutive lookups, with a 100ms
interval between the pulses. The major consequence is to reduce average
power needed by the device (and therefore the dissipated heat).

The 100ms delay —hardly noticeable by end-user— is also a typical value, in
some cases even 250ms are possible without significant impact on user’s
experience, where in other cases (long transactions, i.e. slow cards or lot of
data to be read) 25 to 50ms may be better.

b. Serno_WiegandDataclock_Reader

Same as above, but with a Wiegand or Dataclock output. In this code the output
mode is defined at compile time (BOOL out put _w egand), but it is easy to move it to a
persistent configuration area, either RC531’s EEPROM (8 8.7.1) or in the FEED (8 8.7.2).

Observe how we translate the 4-byte card ID to a 10-digit decimal number when
working in Dataclock mode, while we send it without prior translation in Wiegand mode.

% This really simple code is at the basis of Pro-Active IWM-K531. We’ve only added
a “configuration card” handler and store the settings in RC531’s EEPROM.

C. Mifare_Serial_Reader

This is a practical implementation of what we’ve seen in chapter 6. Once again,

configuration data (BYTE address_on_tag) should be moved to a persistent
configuration area.

Interesting point : when we fail to read the card, we try again immediately instead
of waiting 100ms.

d. Mifare_WiegandDataclock_Reader

Same as above, but with a Wiegand or Dataclock output.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 58/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

e. Mifare_Serial_Encoder

This is an “improvement” of paragraph c, but now we write something in the card
each time we see it. The serial line accepts two commands : “E” to erase the cards
(write zeroes instead of data), and “W” to go back to write mode.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 59/ 60

Rm SDK K531/INS
ctive

DEVELOPER'S GUIDE

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a
commercial offer, a license, an advisory, fiduciary or professional relationship between Pro -Active and you.
No information provided in this document shall be considered a substitute for your independent
investigation.

The information provided in document may be related to products or services that are not available
in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the
applicable law. While Pro-Active will use reasonable efforts to provide reliable information, we don't warrant
that this document is free of inaccuracies, errors and/or omissions, or that its content is appropriate for your
particular use or up to date. Pro-Active reserves the right to change the information at any time without
notice.

Pro-Active does not warrant any results derived from the use of the products described in this
document. Pro-Active will not be liable for any indirect, consequential or incidental damages, including but
not limited to lost profits or revenues, business interruption, loss of data arising out of or in connection with
the use, inability to use or reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where
malfunction of this product may result in personal injury. Pro-Active customers using or selling these
products for use in such applications do so on their own risk and agree to fully indemnify Pro -Active for any
damages resulting from such improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of Pro
Active and/or its suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you
constitute a license and not a transfer of title : you may not remove this copyright notice nor the proprietary
notices contained in this documents, and you are not allowed to publish or reproduce this document, either
on the web or by any mean, without written permission of Pro -Active.

EDITOR’S INFORMATION

Published by Pro-Active SAS, 13, voie La Cardon 91120 Palaiseau — France
R.C.S. EVRY B 429 665 482 - APE 722 Z

For more information, please contact us at info@pro -active.fr .

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.
PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other trademarks are property of their respective owners.

PMDE100 AA Page : 60/ 60

