
PNA23174-AA

Application Note

Using the M519 in PC/SC Coupler
 mode over a Serial interface

Headquarters, Europa Americas

SpringCard SAS
2, voie la Cardon
Parc Gutenberg
91120 Palaiseau
FRANCE

SpringCard Inc.
185 Alewife Brook Parkway,
ste 210
Cambridge, MA 02138
USA

Phone: +33 (0)1 64 53 20 10 Email: sales@springcard.com www.springcard.com

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

1/48

PNA23174-AA

Document Identification

Category Application notes

Group/Family SpringCore / M519

Reference & Version PNA23174-AA

Date 10/10/2023

Diffusion Public

Keywords M519, PC/SC, CCID, serial, SDK

Revision History

Version Date Author QC Description

AA 16/08/2023 JDA CFE Initial release

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

2/48

PNA23174-AA

Table of Contents

 1 Introduction..5
 1.1 Overview..5
 1.2 Target platforms — a foreword..5
 1.3 Related Documents..7
 1.4 Related Literature...7
 1.5 Glossary...10

 2 Hardware setup...13
 2.1 Quick-start for the M519-SRK...13
 2.2 Quick-start for the M519-SUV...17
 2.3 Other platforms...18

 3 Configuring the M519 for PC/SC Coupler operation...23
 3.1 Configuring the M519 using MODE0 and MODE1..23
 3.2 Configuring the M519’s non-volatile memory..24
 3.3 Testing the connection..24

 4 Getting started with the SDK..29
 4.1 Downloading the PC/SC-Like for Serial SDK from GitHub...29
 4.2 Exploring the SDK files and projects..30
 4.3 Building the examples..30
 4.4 Libraries and namespaces, documentation..35
 4.5 The sample application at a glance..38

 5 Porting the SDK to another platform..41
 5.1 UART functions...41
 5.2 Synchronization functions..41
 5.3 Test suite...43
 5.4 Notification system..44

 6 Going further.. 47

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

3/48

PNA23174-AA

 1 Introduction

 1.1 Overview

This document describes the principle of using the M519 and its derivatives as a PC/SC
Coupler over a Serial communication link.

The M519 is an advanced dual-interface OEM module, supporting contactless operation
(NFC/RFID HF, ISO/IEC 14443 and 15693) through an external antenna, and, through an
optional interface board, contact (ISO/IEC 7816) operation.

The M519 supports various operating modes: Smart Reader, RFID Scanner (keyboard
wedge), PC/SC Coupler, and more. The PC/SC Coupler mode is both the most versatile
and the most open (interoperable) of all modes, but it is generally limited to USB devices
(and more specifically to the CCID protocol specified by the USB Workgroup).

Fortunately for developers/integrators who aim to build a smart card-aware application
for a serial-only host in a seamless way, the M519 implements an equivalent “CCID over
Serial” protocol; this makes it possible even for the tiniest host to run a “PC/SC-Like”
software library. This document explains how to do so; it is associated with the
springcard-ccid-serial SDK (software development kit) that can be downloaded
freely from GitHub:

https://github.com/springcard/springcard-ccid-serial

The document will guide you through the process of setting up and operating the M519
in PC/SC Coupler mode over a Serial interface, porting the SDK to your target system or
micro-controller, and start developing your own smart card-aware solution.

 1.2 Target platforms — a foreword

It is difficult to present the integration of a product such as the M519 within an
embedded target in the general case, as each embedded target has its own specific

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

5/48

https://github.com/springcard/springcard-ccid-serial

PNA23174-AA

features (bare-metal microcontroller, cooperative micro-kernel, pre-emptive micro-kernel,
use of DMA and/or DPC, etc.).

We have chosen to focus our SDK and examples on just two targets

• The PC world (Linux or Windows), because the M519 development board (M519-
SRK) provides easy access to the M519 serial interface via a FTDI USB-serial
bridge,

• The Raspberry Pico (RP2040 processor), because it is an inexpensive development
board that is very easy to supply and start up. Unlike other boards, all its I/Os are
3V, and its Cortex-M0+ core is an industry standard.

The following chapters will give a brief overview of how to set up projects for the PC and
for the Raspberry Pico.

To make sure the source code provided in the SDK could be “easily” ported to any target,
even a small MCU, the following compromises have been made:

• The code is purely imperative, procedural, and uses a single execution context (it
does not involve multi-tasking or multi-threading1);

• No complex queues are involved, all the memory used is statically allocated.

Of course, implementers remain totally free to introduce more advanced programming
patterns when creating their own solution.

1 Linux and Windows examples use a thread only to simulate the UART interrupt (ISR) that would exist
on a MCU.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

6/48

PNA23174-AA

 1.3 Related Documents

 1.3.1 Documents available as PDF
Reference Title / Description

PFT22217 M519 Data Sheet and Integration Guide

PMD23175 M519-SRK Getting Started Guide

PMI23209 M519-SUV Getting Started Guide

PMD15305 Zero-Driver CCID low level Implementation

PNA23207 Using the M519 in PC/SC Coupler mode over a USB interface

 1.3.2 Online Material

Documentation of the SpringCore firmware.

https://docs.springcard.com/books/SpringCore/Welcome

SpringCard Tech Zone, the blog of the R&D Team

https://tech.springcard.com/

 1.4 Related Literature

The present document makes use of concepts and vocabulary that are taken from
existing standards and specifications. Please refer to the original documents for a
complete understanding.

 1.4.1 ISO Standards

 1.4.1.1 ISO/IEC 7816

ISO/IEC 7816 is an international standard that defines the characteristics and
requirements for integrated circuit cards (ICCs) or smart cards, as well as their interfaces
with devices. This standard encompasses physical, electrical, communication, and

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

7/48

https://tech.springcard.com/
https://docs.springcard.com/books/SpringCore/Welcome

PNA23174-AA

application-specific aspects of smart cards, providing a comprehensive framework for
their design and use. It defines two protocols: T=0 (character) and T=1 (block).

According to this standard, the M519 is an ICC coupling device (CD) e.g. a smart card
coupler.

The M519 provides the protocol-level (TPDU) interface; communication between the host
application and the smart card through the M519 takes place at APDU level. This
principle is fully described in ISO/IEC 7816-4.

Visit iso.org online store if you want to buy this standard.

 1.4.1.2 ISO/IEC 14443 and 15693

ISO/IEC 14443 defines the standards for proximity cards used for identification and
contactless communication. ISO/IEC 15693, specifies the requirements for vicinity cards,
which have a longer communication range when used with a larger antenna. According to
these standard the M519 is both a proximity coupling device (PCD) and a vicinity
coupling device (VCD).

Both standards detail parameters like physical characteristics, radio frequency power, and
signal interface for contactless ICC.

High-end contactless smart cards are operated at APDU-level over a block protocol
(“T=CL”) exactly like their contact counterparts, where low-end RFID ICs use a
proprietary command set (this is for instance the case for the NXP Mifare family) or the
low-level command set defined in ISO/IEC 15693.

Visit iso.org online store if you want to buy these standards.

 1.4.2 PC/SC Standard

PC/SC (Personal Computer/Smart Card) is an open standard that ensures seamless
integration and communication between smart cards and personal computers. It is used
in applications like digital security, network security, and identity authentication.

The documents are publicly available on https://pcscworkgroup.com/

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

8/48

https://pcscworkgroup.com/
https://iso.org/
https://iso.org/

PNA23174-AA

The M519 is compliant with the current version of PC/SC (v2).

Most high-end operating systems feature a PC/SC stack, generally associated to a set of
USB drivers. But since this document focuses on Serial communication, we consider that
the target is a microcontroller or PLC, that lacks PC/SC support. Therefore, a lightweight
equivalent of the PC/SC stack has to be implemented on your side. The springcard-
ccid-serial SDK, and its “PC/SC-Like” library, will help you doing so.

 1.4.3 CCID Standard

CCID (Chip Card Interface Device) is a USB protocol that allows a smart card to be
connected to a computer via a card reader. It facilitates communication between the
computer and the smart card.

The documents is publicly available on https://www.usb.org/document-library/smart-
card-ccid-version-11

Because CCID is a USB-only specification, when used over its Serial interface, the M519
uses a SpringCard-specific protocol. Yet, this protocol is so closely derived from CCID that
reading this standard is helpful to be able to implement the “driver” for the M519 into
your own target.

The springcard-ccid-serial SDK, and its “CCID over Serial” driver, will help you doing
so. The reference document is [PMD15305].

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

9/48

https://www.usb.org/document-library/smart-card-ccid-version-11
https://www.usb.org/document-library/smart-card-ccid-version-11

PNA23174-AA

 1.5 Glossary

Reference Title / Description

APDU
Application-Protocol Datagram Unit. The name comes from the OSI model to
describe end-to-end command/response exchanges, between two applications.

ATR
Answer To Reset. This is the identification message that a smart card sends
when starting up.

CCID Chip Card Interface Device, the USB specification for smart card couplers

HAL Hardware Abstraction Layer

PCD
Proximity Coupling Device; i.e. a contactless coupler compliant with ISO/IEC
14443

PC/SC Personal Computer/Smart Card

PICC
Proximity Integrated Circuit Card; i.e. a contactless smart card compliant with
ISO/IEC 14443

OSI
Open Systems Interconnection: a conceptual framework used to understand
and standardize the functions of telecommunication and computing systems

RS-232

A standard serial communication standard, with 2 independent lines (RX/TX)
for full-duplex communications. Electrical levels are
- 0: +3 to +15V
- 1: -15 to -3V

RS-485

A standard serial communication standard, with 1 differential pair allowing
half-duplex communications only. Electrical levels are:
- 0: VA < VB

- 1: VA > VB

RS-TTL

Not a standard, but a shortcut to describe serial communication with 2
independent lines (RX/TX) for full-duplex communications and electrical levels
that are TTL or TTL/CMOS:
- 0: < 0.8V
- 1: > 2V

TPDU
Transport-Protocol Datagram Unit. The name comes from the OSI model to
describe a packet or frame sent by a device to another.

USB Universal Serial Bus

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

10/48

PNA23174-AA

VCD
Vicinity Coupling Device; i.e. a contactless coupler compliant with ISO/IEC
15693

VICC Vicinity Integrated Circuit Card; i.e. an RFID chip compliant with ISO/IEC 15693

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

11/48

PNA23174-AA

 2 Hardware setup

 2.1 Quick-start for the M519-SRK

The M519-SRK “Starter Kit” is a mother board for the M519 and various peripherals
(antenna, smart card interfaces). It is designed to let the implementer/developer evaluate
the M519 in various configurations easily.

Warning: setting a wrong hardware configuration or applying a wrong power level is
likely to damage the M519 or the host. Please refer to [PMD23175] for details.

 2.1.1 M519-SRK + PC, using the FTDI USB to Serial bridge

• Disconnect any existing connection (USB or serial), unplug power jack,

• Set jumper JP4 “RF PWR SETUP” to position “EXT”

• Set jumper JP1 to position “JP4”,

• Set jumper JP5 “V_RF_IN” to position “JP1”,

• Plug a DC 12V power supply into jack “12V PWR”,

• Connect the host using an USB cable to the “USB UART” mini-B connector.

NB: in this configuration, you must provide external power to the SRK through its power
jack. The schematics does not derivate any power to the M519 from the USB link arriving
at the FTDI chip.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

13/48

PNA23174-AA

Illustration 1: M519-SRK connected to the PC though its FTDI USB to Serial bridge

 2.1.2 M519-SRK + PC, using the JST 8-pin connector

• Disconnect any existing connection (USB or serial), unplug power jack,

• Set jumper JP4 “RF PWR SETUP” to position “EXT”

• Set jumper JP1 to position “JP4”

• Set jumper JP5 “V_RF_IN” to position “JP1”,

• Connect the host UART (3V level) and the power supply (5V DC) to the JST PH 8-
pin connector “UART”.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

14/48

PNA23174-AA

NB: in this configuration, you may provide external power to the SRK through its power
jack if the power source at the JST connector is too weak.

Illustration 2: M519-SRK connected and powered through its JST 8 connector

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

15/48

PNA23174-AA

 2.1.3 M519-SRK + Raspberry Pico

• Disconnect any existing connection (USB or serial), unplug power jack,

• Open jumper JP5 “V_RF_IN”,

• Use a breakout board and jumper wires to connect a Raspberry Pico, according to
the following pinout:

Signal Pin on the Raspberry Pico Pin on the M519

Ground 38 (GND) 37 (GND)

3.3V power supply 36 (3V3 OUT)
39 (VIN_RF)
40 (VIN_3V3)

Serial, host to M519 1 (UART0 TX) 21 (M519 RX)

Serial, M519 to host 2 (UART0 RX) 21 (M519 TX)

It could be a good idea to add a few jumper wires to connect a logic analyser, as done in
the picture below.

• We will be using the USB link of the Raspberry Pico to run the sample. The M519
is powered by the 3V3 output generated by the Raspberry Pico from the 5V
delivered by the host through the USB link.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

16/48

PNA23174-AA

 2.2 Quick-start for the M519-SUV

The M519-SUV “Serial/ USB Versatile antenna” is a 69x45 antenna that holds the M519.
It is designed to be integrated in virtually any equipment and either an USB or a Serial
interface. The electrical level of the Serial interface (“RS-TTL”, RS-232 or RS-485)
depends on the variant.

Warning: setting a wrong hardware configuration or applying a wrong power level is
likely to damage the M519 or the host. Please refer to [PMI23209] for details.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

17/48

Illustration 3: Raspberry Pico W, M519-SRK and Logic analyser (Saleae)

PNA23174-AA

 2.2.1 M519-SUV + PC

TBD

 2.2.2 M519-SUV + Raspberry Pico

TBD

 2.3 Other platforms

This paragraph exposes only the requirements regarding the serial interface itself, the
power supply, and the optional handshaking and configuration signals. Of course, an
antenna and its matching circuits are necessary for contactless operation, and contact
interfaces are necessary to use contact smart cards.

Please refer to [PFT22217] for details.

 2.3.1 Serial interface

Using the M519 in PC/SC Coupler over a serial link is possible using only the 2
communication lines (RX, TX) of the serial interface.

On the M519 module itself, the serial interface operates as 0 / 3.3.V. Depending on the
hardware behind, your system may communicate with the M519 by the mean of an RS-
232, RS-422 or “RS-TTL” (0 / 5V) interface. RS-485 may also be used, but with particular
precaution since this medium is half-duplex only (more on that in § 5.4).

When using the M519-SUV, always check the actual configuration of the antenna, since
this single hardware provides the 3 interface levels. Do not connect the USB interface
together with the serial interfaces since USB takes priority.

When using the M519-SRK, you may connect to the M519 using either

• the USB to Serial bridge “USB UART” (USB mini-B connector, FTDI chipset),

• the JST PH 8 connector “UART” that supports either 0 / 3.3V or 0 / 5V levels,

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

18/48

PNA23174-AA

• the header that is directly connected to the module’s pin (0 / 3.3V only in this case).

Connect only one interface at once. Do not connect the main USB interface (USB type C
connector, label “USB M519”) together with the serial interfaces since USB takes priority.

Always report to the detailed documentation of the actual hardware involved to avoid
damaging the M519 or the host system.

 2.3.2 Power supply

The serial interface is available only when the M519 is powered at 3.3V (5V power is
associated with USB).

Unless you are using a complete product that derivates a 3.3V rail from over power
source, respect the following setup:

• Connect both VIN_3V3 (pin 40) and VIN_RF (pin 39) to a 3.3V power supply that
can deliver at least 500mA,

• Connect both GND signals (pins 37 and 20) to the ground of the power supply.

• Leave VBUS (pin 38) unconnected.

 2.3.3 Optional handshaking signals

Synchronization between the host system and the M519 can be simplified using a couple
of I/O lines (0 / 3.3V).

• /WAKEUP (pin 16)

This signal is asserted (LOW level) by the M519 when it is not processing a command
from the host (and therefore is HIGH while the M519 is processing a command, or
starting-up).

A HIGH to LOW transition of the /WAKEUP signal let the host know that the module has
finished processing the last command sent by the host. The host shall never send a
command unless /WAKEUP is low.

When the M519 starts, the host should wait for the HIGH to LOW transition of the
/WAKEUP signal before sending the first command. If the /WAKEUP signal is not made

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

19/48

PNA23174-AA

available to the host, the host shall wait at least 500ms before probing the M519 with a
first command.

When the M519 resets for any reason while no command is running, the /WAKEUP
signal makes a LOW to HIGH transition. This make it possible for the host to detect
immediately that the M519 has restarted. If the /WAKEUP signal is not made available to
the host, only a failure or timeout on the next command will tell that something went
wrong.

• /RESET (pin 19)

This signal may be driven by the host to reset the M519.

Start-up of the M519 may take up to 500ms (more if a firmware upgrade takes place).
Therefore, the host shall way at least 500ms before probing the module (unless the
module asserts the /WAKEUP signal earlier).

• /SUSPEND (pin 17) [NOT IMPLEMENTED IN CURRENT FIRMWARE REVISION]

This signal may be driven by the host to tell the M519 to enter a low power mode.

In PC/SC Coupler operation, when /SUSPEND is asserted by the host, the M519 switches
its contactless (RF) interface off, and powers down all the contact cards (if some).

Entering suspend mode takes a few seconds, and resuming from suspend mode also
takes a few seconds. Therefore, the host shall not toggle the /SUSPEND pin for less that
10 seconds.

 2.3.4 Optional configuration signals

The M519 features two configuration pins, MODE0 (pin 31) and MODE1 (pin 32).

When MODE0 and MODE1 are HIGH level or left unconnected, the M519 uses the
configuration defined in its non-volatile memory. Namely, its operating mode is the one
that has been selected by register H02C0. Value shall be H02 for PC/SC operation.

https://docs.springcard.com/books/SpringCore/Non_volatile_memory/Configuration/
Main_configuration/Profile

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

20/48

https://docs.springcard.com/books/SpringCore/Non_volatile_memory/Configuration/Main_configuration/Profile
https://docs.springcard.com/books/SpringCore/Non_volatile_memory/Configuration/Main_configuration/Profile

PNA23174-AA

It is possible to override the configuration stored in the non-volatile memory by asserting
either MODE0 or MODE1 at boot time (power up or action on /RESET). Tying MODE1 to a
LOW level while MODE0 remains HIGH level enforce PC/SC operation, whatever the
value in register H02C0.

The subject of the configuration of the M519 is covered in details in the next chapter.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

21/48

PNA23174-AA

 3 Configuring the M519 for PC/SC Coupler
operation

M519 OEM module:

The M519 is delivered with a default configuration that enables only the SpringCard
Direct protocol, not the CCID protocol that is required for PC/SC operation.

There are some exceptions to the fact that the M519 is delivered with only the
SpringCard direct protocol enabled. For instance, sample products may have been pre-
configured by SpringCard FAE / Support team for the ease of a particular demonstration.
Also custom order codes may be placed for large batches of pre-configured modules.

Anyway, generally speaking, the integrator shall always plan for and execute a
configuration step for the M519 module while assembling the final system.

There are two methods to configure the M519: either by the setting MODE0 and MODE1
signals, or by setting register H02C0 to value H02 in the non-volatile memory.

Products derived from the M519:

Products like the M519-SUV are generally delivered with a specific factory configuration.
Consult SpringCard Sales team to select the appropriate order code to get M519-SUV
pre-configured for PC/SC Coupler operation. Pay attention that writing a new
configuration, as explain below, will overwrite the factory configuration.

 3.1 Configuring the M519 using MODE0 and MODE1

To enforce PC/SC Coupler operation,

• Leave MODE0 unconnected, or connect it to the 3.3V level,

• Connect MODE1 to the ground,

• Perform a full reset of the module, either by cycling the power supply or asserting
then releasing the /RESET signal.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

23/48

PNA23174-AA

Of course this method is not available on the M519-SUV since MODE0 and MODE1 are
not made available on any of the connectors.

When using the M519-SRK, simply move the MODE1 switch to the ON position, while
the MODE0 remains in the OFF position, and press the RESET button.

 3.2 Configuring the M519’s non-volatile memory

The simplest procedure uses a terminal software and human interaction with the M519. It
should work whatever the current configuration of the M519 is, since the shell (“human
console”) is available in all modes.

• Connect to the M519 over a serial interface. Refer to next paragraph “Testing the
connection” for the procedure and parameters,

• Enter command cfgC0 to read the current value of register H02C0,

• Enter command cfgC0=02 to activate the CCID protocol and PC/SC operation,

• Enter command reset to activate the new configuration.

If the M519 is in its default configuration (SpringCard Direct protocol), the procedure may
be completely automated using SpringCoreConfig command line tool, like this:

SpringCoreConfig --serial=COM5 --write 02C0=02

(Replace COM5 with the actual communication port on your production/test system).

The drawback is that this procedure with fail if the device has already been configured for
PC/SC mode (or any other but Direct).

 3.3 Testing the connection

 3.3.1 Linux

• Download and install a terminal software for serial communication.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

24/48

PNA23174-AA

For the snapshots, we are using Minicom (on Ubuntu/Debian, use sudo apt-get
install minicom to install it).

• Open a the serial port the M519 is connected to. Configuration is:

▪ Baudrate: 38400bps,

▪ Format: 8 data bits, 1 stop bit, no parity, no flow control.

The serial port shown in the examples is /dev/ttyS5. Adjust to our actual setup.

• Reset the M519,

• Wait at least 250ms to let the bootloader execute,

• Send <CR><LF>,

• The M519 echoes the new line sequence and replies

SpringCard M519 v1.26 PC/SC Serial<CR><LF>
> <CR><LF>

Illustration 4: Retrieving the prompt of the M519 with Minicom

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

25/48

PNA23174-AA

Congratulation! This sequence shows that the M519 is correctly configured and
connected to your Linux computer. Don’t forget to disconnect the terminal software from
the serial port before trying to connect to the M519 from another software.

 3.3.2 Windows

• Download and install a terminal software for serial communication.

For the snapshots, we are using Hterm, a free software available at

https://www.der-hammer.info/pages/terminal.html

• Open a the serial port the M519 is connected to. Configuration is:

▪ Baudrate: 38400bps,

▪ Format: 8 data bits, 1 stop bit, no parity, no flow control.

The serial port shown in the examples is COM5. Adjust to our actual setup.

• Adjust the configuration of the terminal software so that

▪ Terminal sends <CR><LF> when you hit the <RETURN> key,

▪ Terminal use <CR><LF> as new line separator.

• Reset the M519,

• Wait at least 250ms to let the bootloader execute,

• Send <CR><LF>,

• The M519 echoes the new line sequence and replies

SpringCard M519 v1.26 PC/SC Serial<CR><LF>
> <CR><LF>

“v1.26” is the version number of the firmware. Newer firmwares will show another
version number.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

26/48

https://www.der-hammer.info/pages/terminal.html

PNA23174-AA

“PC/SC” is the operating mode. If your M519 answers with another operating mode, go
back to previous paragraph “Configuring the M519 for PC/SC Coupler operation”.

“Serial” is the primary host interface. If your M519 answers “USB”, not “Serial”, go back to
step “Connecting the M519 to your target”.

Illustration 5: retrieving the prompt of the M519 with HTerm

Congratulation! This sequence shows that the M519 is correctly configured and
connected to your Windows computer. Don’t forget to disconnect the terminal software
from the serial port before trying to connect to the M519 from another software.

 3.3.3 Raspberry Pico

There is no easy way to test the communication with the Raspberry Pico. You may
immediately proceed with the sample (§ 4.3.4).

If the sample does not work immediately, a logic analyser is a valuable tool to understand
the problem and come to a solution.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

27/48

PNA23174-AA

Illustration 6: Capture of the Saleae Logic Pro software showing the initial handshaking (ping
then GET DESCRIPTOR) between the Raspberry Pico and the M519

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

28/48

PNA23174-AA

 4 Getting started with the SDK

 4.1 Downloading the PC/SC-Like for Serial SDK from GitHub

The SDK that accompanies this application note is named springcard-ccid-serial and
is hosted on GitHub. Direct link is:

https://github.com/springcard/springcard-ccid-serial

If you have Git installed, you may clone it directly

git clone https://github.com/springcard/springcard-ccid-serial.git

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

29/48

Illustration 7: springcard-ccid-serial project on GitHub

https://github.com/springcard/springcard-ccid-serial

PNA23174-AA

Then

cd springcard-ccid-serial

to enter the directory.

 4.2 Exploring the SDK files and projects

The organisation of the SDK tree is pretty straightforward:

Directory Content

/ docs The HTML documentation of the library and driver, generated by Doxygen

/ projects

 / linux

 / rpi_pico

 / win32_mingw

 / win32_vs2022

/ src

 / ccid Source code for the CCID “driver”

 / hal Hardware abstraction layer (one per platform)

 / sample Source code for the sample application

 / scard Source code for the PC/SC-Like library

 4.3 Building the examples

 4.3.1 Linux

To build this sample, you must have GCC and GNU make installed on your machine.
There are plenty of tutorials explaining how to do so on Linux.

To build the sample,

• Enter the directory of the project

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

30/48

PNA23174-AA

cd projects/linux

• Run make to build the project

make

When running the sample, specify the communication device after the -d command line
flag.

bin/ccid-serial -d /dev/ttyS5

 4.3.2 Windows, using MinGW and GCC

To build this sample, you must have MinGW, GCC and GNU make installed on your
machine. There are plenty of tutorials explaining how to do so on Windows.

To build the sample,

• Enter the directory of the project

cd projects/win32_mingw

• Run make to build the project

make

When running the sample, specify the communication device after the -d command line
flag.

bin/ccid-serial.exe -d COM5

 4.3.3 Windows, using Visual Studio

To build this sample, you must have Microsoft Visual Studio 2022 and its C/C++ compiler
installed on your machine.

• Open the projects/win32_vs2022/ccid-serial.sln solution that contains the
project.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

31/48

PNA23174-AA

Illustration 8: The ccid-serial solution and project in Visual Studio 2022

• Select the target configuration you want to build: Debug or Release, x86 or x64,

• Build the software.

When running the sample, specify the communication device after the -d command line
flag.

ccid-serial.exe -d COM5

 4.3.4 Raspberry Pico

To build this sample, you must have the Raspberry Pico SDK and its toolchain (GCC for
ARM, CMake, GNU make) installed on your machine. There are plenty of tutorials
explaining how to do so on Linux.

For instance, you may follow this tutorial:

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

32/48

PNA23174-AA

https://www.gibbard.me/using_the_raspberry_pi_pico_on_ubuntu/

On a Windows machine, easiest approach is to install or setup WSL (Windows
Subsystem for Linux) to run an Ubuntu or Debian system directly inside Windows, then
install the required SDK and toolchain under WSL.

To build the sample,

• Enter the directory of the project

cd projects/rpi_pico/build

• Run cmake to recreate the Makefile according to your actual setup

cmake ..

• Run make to build the project

make

To run the sample,

• Unplug the Raspberry Pico from the USB host, press the button on the Raspberry
Pico and keep it pressed, plug the Raspberry Pico to the USB host again,

• Once the Raspberry Pico is seen as a disk drive, copy the ccid-serial.uf2 firmware
file to this disk drive,

• The Raspberry Pico then resets and now enumerates as a USB serial
communication device,

• Connect to this communication device with a terminal software (parameters are
not important; you may use 115200bps, 8 data bits, 1 stop bit, no parity, no flow
control) and press the ? Key to see the banner and menu.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

33/48

https://www.gibbard.me/using_the_raspberry_pi_pico_on_ubuntu/

PNA23174-AA

Illustration 9: Banner and menu of the sample application running in the Raspberry Pico

• Press the r key to run the example.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

34/48

PNA23174-AA

Illustration 10: Sample application running in the Raspberry Pico

 4.4 Libraries and namespaces, documentation

The SDK contains two libraries that could be re-used in any project using the M519
hardware:

• The CCID over Serial “driver”,

• The PC/SC-Like library.

 4.4.1 The CCID namespace

The public functions of the CCID “driver” are exposed in ccid.h .

Every function of this “driver” is prototyped as follow:

LONG CCID_LIB(FunctionName)(<Arguments>);

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

35/48

PNA23174-AA

Thanks to this CCID_LIB macro in pcsc-serial.h, the prototype expands as:

LONG CCID_FunctionName(<Arguments>);

In the following pages of the documentation, we will write only CCID_FunctionName to
ease the reading, but the application code should use CCID_LIB(FunctionName) to keep
maximum flexibility.

The return type is generally a LONG, with a few exceptions:

• BOOL for CCID_IsValidDriver that tells whether the driver is up and running, or
not,

• BYTE for CCID_GetSequence that is used internally to manage the sequence
counter of the CCID messages.

 4.4.2 The PC/SC namespace

The public functions of the PC/SC-Like stack are exposed in scard.h and the error codes
are defined in scard_errors.h .

The PC/SC-Like library mimics the implementation of the PC/SC API (WinsCard.h) that
Microsoft and others have created from the standard. Every function prototyped in
WinsCard.h has a name starting with SCard (for instance, SCardStatus), and the error-
code values have names starting with SCARD_ (SCARD_S_SUCCESS for no error).

To avoid name collisions when building on Windows/Linux, every function in the PC/SC-
Like library is prototyped as follow:

LONG SCARD_LIB(FunctionName)(<Arguments>);

and the error-code values are defined as follow:

SCARD_ERR(ERROR_CODE) = <Value>

Thanks to the SCARD_LIB and SCARD_ERR macros in pcsc-serial.h, these expand
respectively as:

LONG SCARD_FunctionName(<Arguments>);

and

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

36/48

PNA23174-AA

SCARD_ERR_ERROR_CODE = <Value>

In the following pages of the documentation, we will write for convenience:

• SCardFunctionName (even if the actual name of the function generated by the
preprocessor is SCARD_FunctionName),

• SCARD_ERROR_CODE (even if the actual name of the function generated by the
preprocessor is SCARD_ERR_ERROR_CODE).

The application code should use SCARD_LIB(FunctionName) and
SCARD_ERR(ERROR_CODE) to keep maximum flexibility.

The return type is generally a LONG, with the exceptions of functions with a “Is” in the
name (SCardIsValidContext, SCardIsCancelledHook, SCardIsFatalError) that return a
BOOL.

 4.4.3 Documentation of the PC/SC-Like stack and CCID “driver”

The code is documented using the Doxygen syntax.

The corresponding documentation is available as HTML format in the /docs directory.

Pay attention that due to the CCID_LIB, SCARD_LIB and SCARD_ERR macros control the
namespaces; the actual function and macro names may be different than the ones written
in the documentation.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

37/48

PNA23174-AA

Illustration 11: HTML documentation of the libraries

 4.5 The sample application at a glance

All the examples that can be compiled within the SDK are based on the same source
code and run basically the same sequence:

• Initiate serial configuration, send a “ping” command and expect to receive a
response from the M519.

The “ping” command is actually a GET STATUS command in the CCID over Serial
protocol, as documented here:

https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/
Non_USB_Control/GET_STATUS

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

38/48

https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/GET_STATUS
https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/GET_STATUS

PNA23174-AA

Once a device has answered to the ping, the sequence continues with:

• Read the descriptors from the device.

This part is not necessary, but is interesting to confirm that the communication is working
as expected, and that we are actually connected to a M519 or another SpringCard device
using the same CCID over Serial protocol.

Reading the descriptor is documented here:

https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/
Non_USB_Control/GET_DESCRIPTOR

The format of the descriptors is specified in [USB] and in [CCID] (and documented in the
page mentioned above).

• Activate PC/SC operation.

By default, the device is idle to limit the power consumption when no host is ready to
handle the arrival of a smart card. That’s why the CCID_Start function must be invoked
explicitly.

The CCID_Start function uses the SET CONFIGURATION command of the CCID over
Serial protocol, as documented here:

https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/
Non_USB_Control/SET_CONFIGURATION

The option byte tells the M519 whether the host application supports Notifications, or
not (more on that in § 5.4).

• Read the slot count from the device.

This is also optional; if we want to use only the contactless slot, we can consider that the
M519 has only one slot.

Reading the slot count is done using SCardControl (H58 H20 H80). See this page for
reference:

https://docs.springcard.com/books/SpringCore/Host_Protocols/Direct_Protocol/
CONTROL_class/Queries/GET_DATA

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

39/48

https://docs.springcard.com/books/SpringCore/Host_Protocols/Direct_Protocol/CONTROL_class/Queries/GET_DATA
https://docs.springcard.com/books/SpringCore/Host_Protocols/Direct_Protocol/CONTROL_class/Queries/GET_DATA
https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/SET_CONFIGURATION
https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/SET_CONFIGURATION
https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/GET_DESCRIPTOR
https://docs.springcard.com/books/SpringCore/Host_Protocols/CCID_Protocol_(PCSC)/Non_USB_Control/GET_DESCRIPTOR

PNA23174-AA

• If this test is enabled in the parameters, run an “echo” test using the SCardControl
function (ESCAPE in [CCID]).

• Wait for a smart card to be inserted in any slot.

If the Notifications have been enabled, the application waits using
SCardGetStatusChange until a Notification arrives.

Otherwise, the application polls the slots using SCardStatus.

When a smart card arrives:

• Invoke the SCardConnect function to get access to the card and retrieve its ATR.

• Invoke SCardTransmit (HFF HCA H00 H00 H00) which is the APDU defined by
PC/SC to get the “serial number” (protocol-level ID) of the card (this works only
with contactless cards).

• If this test is enabled in the parameters, run an other “echo” test using the
SCardTransmit function (XFR BLOCK in [CCID]).

• Invoke SCardDisconnect to reset and release the card.

A real-world application would complete the card transaction (between SCardConnect
and SCardDisconnect) by getting authenticated on the card, selecting directories or file,
reading and/or writing data.

This may sound far from this basic example at first, but any transaction, even the most
complex one, would rely on exchanging APDUs with the smart card through the
SCardTransmit function (XFR BLOCK in [CCID]).

Therefore, once we have enabled the trio SCardConnect / SCardTransmit /
SCardDisconnect, we have built the foundation to develop absolutely any smart card-
aware application.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

40/48

PNA23174-AA

 5 Porting the SDK to another platform

Porting the SDK starts by adjusting the HAL (hardware abstraction layer). The functions
that you shall implement are the ones listed in file ccid_hal.h.

 5.1 UART functions

The minimal HAL provides the CCID_SerialSendByte function to send one byte to the
M519, and calls the CCID_SerialRecvByteFromISR callback when one byte has been
received.

There are only a few auxiliary functions that may be simplified or removed:

• CCID_SerialSendBytes: unless you want to use a DMA or alike, this function is
nothing more than a loop over CCID_SerialSendByte,

• CCID_SerialInit, CCID_SerialOpen: selecting and enabling the UART has to be
done in your own code, before activating the CCID driver (with function CCID_Init).
Your initialization code shall configure the UART for 38400bps, 8 data bits, 1 stop
bit, no parity, no flow control. CCID_SerialClose is virtually useless,

• CCID_SerialIsOpen: on a MCU, could return TRUE all the time, unless a physical
error (framing violation or overrun) has been encountered by the UART. In this
case, your upper-level code is remains of reinitializing the UART before activating
the CCID driver again.

 5.2 Synchronization functions

A single execution context runs the PC/SC-aware application, the PC/SC-Like stack and
the CCID driver. Only the CCID_SerialRecvByteFromISR callback runs from a different
context, which is the ISR (interrupt vector) of the UART RX interrupt. When waiting for a
message from the M519, the execution flow has to be stopped until a complete buffer
has arrived. This is done using the CCID_WaitWakeup function.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

41/48

PNA23174-AA

In turn, the CCID_SerialRecvByteFromISR callback will use the CCID_WakeupFromISR
callback when an incoming message has been received, and expects that this callback
resumes the execution flow.

The HAL shall then provide:

• CCID_WaitWakeup: this functions takes a timeout (in millisecond) as single
parameter. It shall block until a message arrives or the timeout occurs, and return
accordingly (TRUE if a message has been received, FALSE in case of a timeout);

• CCID_WakeupFromISR: this callback shall unblock the execution flow;

• CCID_ClearWakeup: this function shall reset the unblock state.

A minimal implementation could be done using a volatile flag and a free running timer
with a 1-millisecond interval or a busy-wait function:

static volatile BOOL fWakeup;

BOOL CCID_WaitWakeup(DWORD timeout_ms)
{

while (!fWakeup)
{

if (timeout_ms != (DWORD) -1) /* (DWORD) -1 is INFINITE */
if (timeout_ms-- == 0) return FALSE;

sleep_ms(1);
}
return TRUE;

}

void CCID_WakeupFromISR(void)
{

fWakeup = TRUE;
}

void CCID_ClearWakeup(void)
{

fWakeup = FALSE;
}

(where sleep_ms shall stop the execution for the specified number of milliseconds)

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

42/48

PNA23174-AA

Of course if you have an OS or a real-time kernel, using system events would be
definitively better.

 5.3 Test suite

File pcsc-serial-samples.c provides everything implementers need to validate the
behaviour of the PC/SC-Like stack and CCID driver after porting them to their own target.

Set fTestEchoControl and fTestEchoTransmit to TRUE to enable the tests. They both rely
on this feature of the M519:

https://docs.springcard.com/books/SpringCore/PCSC_Operation/APDU_Interpreter/
Vendor_instructions/ECHO

 5.3.1 Timing considerations

The role of the SCardTransmit function (XFR BLOCK in [CCID]) is to send a command (C-
APDU) to the smart card and to receive its response (R-APDU).

Generally speaking, the card is free to take any time it wants before answering. For
instance, generating a RSA private key in a SAM or a secure element usually takes about
1 minute. Even some contactless card, like passports or eID cards, claim in their protocol
bytes that they must be allowed up to 5 seconds to complete some operations.

If the host application opened a timeout-window of 60 seconds, or even 5 seconds, error
detection and recovery would be dramatically slow. For this reason, the M519 always
replies in 1 second or less. If the module is busy with a long card exchange, the reply is a
time extension message. The host application shall allow a slightly longer timeout-
window (our example uses 1200ms) and keep waiting for replies until the exchange with
the card comes to an end.

Some complexity comes from the lack of control flow: the message that contains the
response from the card may arrive “immediately” after the last time extension message.
In this situation, a slow host is likely to be unable to process the time extension message
before the next message arrives. To overcome this issue, a double-buffer structure is
implemented in the CCID driver (see comments in ccid_serial_receiver.c for details).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

43/48

https://docs.springcard.com/books/SpringCore/PCSC_Operation/APDU_Interpreter/Vendor_instructions/ECHO
https://docs.springcard.com/books/SpringCore/PCSC_Operation/APDU_Interpreter/Vendor_instructions/ECHO

PNA23174-AA

The test_echo_transmit function performs an exhaustive test of this part, using the
M519’s ECHO ADPU through SCardTransmit to introduce a variable delay, up to 60
seconds. The test_echo_control function does the same through SCardControl2.

NB: it shall also be noticed that there is no way for the host to interrupt a pending
exchange between the M519 and the card. Asserting the /RESET pin of module is the
only way to abort a long exchange.

 5.3.2 Size considerations

According to ISO/IEC 7816-4, the longest short APDU that is possible is a case 4 (LE

provided) C-APDU having LC = 255. This lead to a C-APDU size of 4 (CLA INS P1 P2) + 1
(LC) + 255 (data) + 1 (LE), i.e. 261 bytes. The longest R-APDU is 256 (data) + 2 (SW), i.e.
258 bytes.

The buffers of the CCID drivers are aligned with this limit of 261 bytes. If your application
needs to use extended APDUs, increase the constant CCID_MAX_PAYLOAD_LENGTH in
file pcsc-serial.h accordingly.

On the over hand, if you know for sure that the smart cards used by your application are
limited to smaller APDUs3, you may decrease the constant to reduce the RAM memory
used by the driver.

 5.4 Notification system

USB is a full-duplex communication bus, where the concept of endpoints makes it very
easy to multiplex communication streams (more or less like the concept of sockets in
TCP/IP). CCID, that is a protocol designed for USB, takes benefit of this concept by using
one pair of endpoint for the main master/slave communication flow between the host and

2 This may appear very strange to send APDUs through SCardControl. Furthermore, the code does not
even verify that there is a card in the slot before sending these APDUs… This is only possible because
the ECHO APDU is internally wired to be used like that. No other APDU will behave the same.

3 For instance NXP Desfire EV0 and EV1 cards will never send, nor receive, an APDU that is larger than
64 bytes.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

44/48

PNA23174-AA

the device (Bulk Out & Bulk In endpoints) and another, virtually independent, endpoint, to
let the device notify the host that its status has changed (Interrupt endpoint). A USB
CCID device should send a Notification through the Interrupt endpoint every time a smart
card is inserted or removed from one of the slots.

Plain-old serial communication does not have an equivalent concept; therefore, enabling
device-to-host Notifications is not always possible, and, when possible, it may introduce
too much complexity for a low-end host.

Not possible: if the serial link is based on RS-485, the communication medium is half-
duplex (not full-duplex as it is with RS-232 or “RS-TTL”). In this situation, the Interrupt
message coming from the M519 is likely to collide with a command coming from the
host.

Too complex: the M519 may send a Notification message anytime. This could be while
the host is transmitting a command, or immediately before or after sending a response.
The host must therefore

• be listening all the time,

• have two buffers, to be able to receive at least two messages one after the other;
the implementation shall also be able to handle them independently of the order
they arrive4.

If you are in one of these situation (RS-485 or low-end host), do not enable the
Notifications when invoking the CCID_Start function (this is a flag in the SET
CONFIGURATION message sent to the M519). In our sample application, the flag
fCcidUseNotifications controls this behaviour.

If the Notifications are not enabled, the application must poll the device with SCardStatus
instead of waiting for a Notification with SCardGetStatusChange.

4 In the implementation provided in the SDK, the CCID_Exchange function discards all Interrupt
messages that arrive while waiting for a Bulk response. This is not much an issue with a single slot
device since the status of the slot is also provided in the Bulk response itself, but on a multi-slot device,
the application will remain blind to the changes concerning the other slots that the one in use.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

45/48

PNA23174-AA

 6 Going further

The goal of the present document is only to let the developer get a basic system onto
which he may start developing a smart-card aware application using the M519 as a
Serial “PC/SC-Like” coupler.

Generally speaking, going further means:

1. Learning to use the PC/SC API — This is not complicated, and the sample
application covers everything.

and

2. Learning how to use the smart card(s) that is(are) involved in the project.

Point 2 is virtually unlimited. The M519 may communicate with any contact or
contactless smart cards, as well as with proprietary contactless chips (like the NXP
Mifare family), RFID labels, NFC tags, remote applications running in NFC mobile phones,
etc. How the card has to be used, how the transaction with the card should be
implemented by the application developer is far outside the scope of this document.
Always refer to the documentation of the card or NFC application that must be provided
to you by the manufacturer or developer of the card or application.

Consider [PNA23207] as the reference for going deeper with PC/SC and the M519. Even
though this application notes and its related SDK target USB applications, the concepts
are the same and most of the source code can be adapted and reused in Serial
applications.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

47/48

PNA23174-AA

Legal Information

DISCLAIMER
This document is provided for informational purposes only and
shall not be construed as a commercial offer, a license, an
advisory, fiduciary or professional relationship between
SPRINGCARD and you. No information provided in this document
shall be considered a substitute for your independent
investigation. The information provided in the document may be
related to products or services that are not available in your
country.

This document is provided "as is" and without warranty of any
kind to the extent allowed by the applicable law. While
SPRINGCARD will use reasonable efforts to provide reliable
information, we don't warrant that this document is free of
inaccuracies, errors and/or omissions, or that its content is
appropriate for your particular use or up to date. SPRINGCARD
reserves the right to change the information at any time without
notice.

SPRINGCARD doesn't warrant any results derived from the use
of the products described in this document. SPRINGCARD will
not be liable for any indirect, consequential or incidental
damages, including but not limited to lost profits or revenues,
business interruption, loss of data arising out of or in connection
with the use, inability to use or reliance on any product (either
hardware or software) described in this document.

These products are not designed for use in life support
appliances, devices, or systems where malfunction of these
products may result in personal injury. SPRINGCARD customers
using or selling these products for use in such applications do so
on their own risk and agree to fully indemnify SPRINGCARD for
any damages resulting from such improper use or sale.

INFORMATION ABOUT THE BRAND
SPRINGCARD, the SPRINGCARD logo are registered trademarks
of SPRINGCARD SAS. All other brand names, product names, or
trademarks belong to their respective holders. Information in this
document is subject to change without notice. Reproduction
without written permission of SPRINGCARD is forbidden.

COPYRIGHT NOTICE
All information in this document is either public information or is
the intellectual property of SPRINGCARD and/or its suppliers or
partners.

You are free to view and print this document for your own use
only. Those rights granted to you constitute a license and not a
transfer of title : you may not remove this copyright notice nor the
proprietary notices contained in these documents, and you are
not allowed to publish or reproduce this document, either on the
web or by any means, without written permission of
SPRINGCARD.

Copyright © SPRINGCARD SAS 2023, all rights reserved.

EDITOR’S INFORMATION
SPRINGCARD SAS company with a capital of 227 000 €
RCS EVRY B 429 665 482
Parc Gutenberg, 2 voie La Cardon
91120 Palaiseau – FRANCE

CONTACT
For more information and to locate our sales office or distributor
in your country or area, please visit www.springcard.com

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS. All other brand names, product
names, or trademarks belong to their respective holders. Information in this document is subject to change without notice.

Reproduction without written permission of SPRINGCARD is forbidden.

48/48

	1 Introduction
	1.1 Overview
	1.2 Target platforms — a foreword
	1.3 Related Documents
	1.3.1 Documents available as PDF
	1.3.2 Online Material

	1.4 Related Literature
	1.4.1 ISO Standards
	1.4.1.1 ISO/IEC 7816
	1.4.1.2 ISO/IEC 14443 and 15693

	1.4.2 PC/SC Standard
	1.4.3 CCID Standard

	1.5 Glossary

	2 Hardware setup
	2.1 Quick-start for the M519-SRK
	2.1.1 M519-SRK + PC, using the FTDI USB to Serial bridge
	2.1.2 M519-SRK + PC, using the JST 8-pin connector
	2.1.3 M519-SRK + Raspberry Pico

	2.2 Quick-start for the M519-SUV
	2.2.1 M519-SUV + PC
	2.2.2 M519-SUV + Raspberry Pico

	2.3 Other platforms
	2.3.1 Serial interface
	2.3.2 Power supply
	2.3.3 Optional handshaking signals
	2.3.4 Optional configuration signals

	3 Configuring the M519 for PC/SC Coupler operation
	3.1 Configuring the M519 using MODE0 and MODE1
	3.2 Configuring the M519’s non-volatile memory
	3.3 Testing the connection
	3.3.1 Linux
	3.3.2 Windows
	3.3.3 Raspberry Pico

	4 Getting started with the SDK
	4.1 Downloading the PC/SC-Like for Serial SDK from GitHub
	4.2 Exploring the SDK files and projects
	4.3 Building the examples
	4.3.1 Linux
	4.3.2 Windows, using MinGW and GCC
	4.3.3 Windows, using Visual Studio
	4.3.4 Raspberry Pico

	4.4 Libraries and namespaces, documentation
	4.4.1 The CCID namespace
	4.4.2 The PC/SC namespace
	4.4.3 Documentation of the PC/SC-Like stack and CCID “driver”

	4.5 The sample application at a glance

	5 Porting the SDK to another platform
	5.1 UART functions
	5.2 Synchronization functions
	5.3 Test suite
	5.3.1 Timing considerations
	5.3.2 Size considerations

	5.4 Notification system

	6 Going further

