SpringCard - PNA20248-AA

PUCK Smart Reader and SpringBlue
Solution

Getting Started Guide

Introduction

SpringCard PUCK

SpringCard PUCK is a versatile NFC/RFID@13.56MHz USB-attached device.

In Smart Reader mode, PUCK is able to fetch virtually any kind of credential, token or user ID
from a contactless card or an NFC smartphone or any other NFC object running in card emulation
mode. The data is then transmitted to the host computer over the USB link, either using a virtual
communication port (serial) profile or the keyboard emulation profile which is very
convenient for legacy applications and/or to replace a barcode scanner.

More than that, the PUCK Blue version adds Bluetooth Low Energy (BLE) connectivity to read a
credential, token or user ID provided by a BLE-enabled smartphone.

The SpringBlue solution

Developing, deploying and maintaining a complete NFC+BLE user authentication solution requires
many skils and a good expertise on secure transactions to achieve a decent security level. Even
for low-end use cases, where the cost of security could be seen as a useless expense, privacy
concerns, the impact of a bad buzz and the risk of a system-wide fraud shall be taken in account
and prevented.

SpringBlue is a both a reference design and a turn-key solution, which has been carefully
designed by SpringCard's R&D team and security experts. The solution is easy to deploy in the
field and rely on a very fast transaction scheme that rely on a minimal number of exchanges
between the reader and the token, and standard AES128 cryptography to ensure both privacy and
authenticity.

About this document

This document is a getting started guide for project managers, integrators or developers who
want to evaluate or deploy a complete NFC+BLE authentication solution based on PUCK Blue
devices together with the SpringBlue architecture and mobiles applications.

Understanding the SpringBlue transaction

The SpringBlue transaction is fully documented in doc. PMD17128.
Basically, the NFC or BLE token stores 5 informations:

e the sitelID, that uniquely identifies the organisation that 'owns' the credential,
e The objectID is a value that identifies the smartphone of the card,


af://n2
af://n200
af://n3
af://n4
af://n8
af://n11
af://n13

e The useriD is the unique identifier of the holder (user) within the organisation,

e An AES key called so1k, to protect the transmission of the objectID. This key is site-wide.

e An AES key called osuk, to protect the transmission of the userip. This key is specific to the
smartphone or card, thanks to a diversification algorithm runned over the objectiD.

Both keys are sensitive data and shall be protected into the smartphones (and into the PUCK
readers, of course).

The transaction is divided into 3 exchanges only, which lead to a short execution time:

1. the PUCK sends SELECT APPLICATION, the object returns OK,

2. the PUCK sends a random challenge, the object returns its own random challenge,

3. the PUCK sends its siteID, the object returns both its objectID and uUserID in a secure
crytogram.

The cryptogram is protected by 2 temporary, disposable AES keys that are computed over both
random challenges and the sork and osuk keys. This architecture prevents any kind of replay
attack and expose little surface to brute-force attacks.

6 steps to instanciate SpringBlue for your own
organisation

There a 6 steps to instanciate SpringBlue over a new organisation

1. Ask SpringCard to issue a new siteID for you. This is importand to make sure different
customers will never use the same SitelID. If you need only to evaluate and test the
solution, please use siteID=00000001.

2. Generate two keys using a strong random number generator. SOIK is your site-wide key to
protect the transmission of the objectID. MSUK is the master key to compute a specific
osuk key for every object.

3. Create a database to store and manage your list of userID.

4. Develop your application to run the SpringBlue transaction and deploy this application to the
smartphones of all the users.

5. Push the configuration quartet Soik, objectID, OSUK, UserID into all the smartphones (or
other NFC/BLE objects).

6. Push the configuration triplet so1k, objectID, mMSuKk into all the PUCK readers.

Configuring a PUCK to accept SpringBlue tokens

Howto configure a PUCK?
Principles

The PUCK features a non-volatile memory which is divided into register banks. Bank 02 (registers
0200 to 02FF) stores the main part of the configuration. Bank 03 (registers 0200 to 02FF)
stores the so-called Smart Reader Templates, that tells the reader how to process the NFC (or
BLE) cards or objects that comes into its nearby.

For a complete reference, please look at the detailed documentation of the SpringCore family,
available online at docs.springcard.com/books/SpringCore.

There are 3 means of configuring a PUCK:

1. Using the springCoreconfig and SpringCoreTool command line utilities,
2. Using the SpringCard Companion service and cloud application,


af://n37
af://n52
af://n53
af://n54
https://docs.springcard.com/books/SpringCore

3. Using a master cards

To ease the reading and to allow a developer to automate the configuration using his own
scripts, we'll focus on the command line utilities, but the two other means would achieve the
same result.

Note that to prevent unwanted configuration changes in-the-field (which would basically be a
denial of service attack onto the readers), support of master cards shall be disabled by
configuration, or a site-specific master card keyset has to be used.

The SpringCore command line tools are fully documented at
docs.springcard.com/books/Tools/SpringCore/index.

Starting from a blank configuration

Use
SpringCoreTool load-defaults

and then

SpringCoreTool reset

to revert the PUCK to its out-of-factory configuration.
Namely, the out-of-factory configuration is

e PC/SC mode (register 02c0 setto 02),
e All other configuration and template registers erased.

Writing a configuration step-by-step

To write a single register, use

SpringConfig --write <ADDR>=<VALUE>

Where <ADDR> is the address of the register, in hex, from 0200 to 03FF, and <VALUE> its content
in hex.

Writing the complete configuration at once

To write many registers at once, use

SpringConfig --file <FILENAME>

Where <FILENAME> is a configuration file. The configuration files follow the JSON syntax and
contain the following structure:


https://docs.springcard.com/books/Tools/SpringCore/index
af://n68
af://n80
af://n84

"type": "mastercardv2-content",
"config": {
"<ADDR>": "<VALUE>",
"<ADDR>": "<VALUE>",

T
"templates": {

"<ADDR>": "<VALUE>",
"<ADDR>": "<VALUE>",

Note that in this case the <ADDR> field is an hex value on one byte only, the first byte being set by
the object's name (02 for "config" and 03 for "templates").

Using PUCK in keyboard emulation mode

Basics

First of all, we configure the operating mode as Smart Reader and the USB interface as HID
(human interface device), keyboard emulation. Then we configure the BLE interface to read
credentials (this part is ignored if the device doesn't have a BLE interface).

SpringCorecConfig --write 02C0=03
SpringCoreConfig --write 02C2=01

QWERTY keyboard layout

SpringCorecConfig --write 02A6=00

AZERTY keyboard layout

SpringCorecConfig --write 02A6=01

Using PUCK in virtual communication port mode

Activating SpringBlue over NFC (all PUCK versions)

Set LKL=BO0 in the Smart Reader template #1 to enable reading SpringBlue credential over NFC.
The siteID and the two security keys soIk and Msuk have to be configured as well.
SpringCorecConfig --write 0310=B0

SpringCorecConfig --write 0315=<SOIK><MSUK>
SpringCoreconfig --write 0316=<SiteID>


af://n90
af://n91
af://n94
af://n96
af://n98
af://n99

Activating SpringBlue over BLE (PUCK Blue only)

Set LKL=BO in the Smart Reader template #0 to enable reading SpringBlue credential over BLE.

The siteID and the two security keys SoIK and MSuk have to be configured as well. Since all
templates are independent, the keys must be explicitly specified in the BLE template, even if they
are already known by the NFC template.

SpringCorecConfig --write 0300=00
SpringCoreconfig --write 0305=<SOIK><MSUK>
SpringCorecConfig --write 0306=<SiteID>

The SpringBlue mobile applications

In 2017, SpringCard has developed a reference mobile application using Cordova, a WebView-
based framework that allows to share most of the code between Android and iOS applications.

Due to the lack of card emulation in iOS, the SpringBlue application for iOS implements only the
BLE transaction. On the other hand, the SpringBlue for Android application implements both BLE
and NFC, thanks to Android's HCE (host card emulation) feature.

Due to the frequent updates in both platforms and increasing constraints when it comes to NFC
and BLE permissions, both applications are not usable anymore on today's systems.

Anyway, the code source is still available and could be used as a reference to implement new
applications.


af://n103
af://n107

	PUCK Smart Reader and SpringBlue Solution
	Getting Started Guide
	Introduction
	SpringCard PUCK
	The SpringBlue solution
	About this document

	Understanding the SpringBlue transaction
	6 steps to instanciate SpringBlue for your own organisation
	Configuring a PUCK to accept SpringBlue tokens
	Howto configure a PUCK?
	Principles
	Starting from a blank configuration
	Writing a configuration step-by-step
	Writing the complete configuration at once

	Using PUCK in keyboard emulation mode
	Basics
	QWERTY keyboard layout
	AZERTY keyboard layout

	Using PUCK in virtual communication port mode
	Activating SpringBlue over NFC (all PUCK versions)
	Activating SpringBlue over BLE (PUCK Blue only)

	The SpringBlue mobile applications


