
PMD15282-CB
DRAFT - PUBLIC

SPRINGCARD PC/SC COUPLERS

Zero-driver - CCID low-level implementation

www.springcard.com

http://www.springcard.com/

PMD15282-CB
page 2 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

DOCUMENT IDENTIFICATION

Category Specification

Family/Customer CCID PC/SC Couplers

Reference PMD15282 Version CB

Status Draft Classification Public

Keywords E663, K663, Ethernet, Serial, BLE, Smart Card, Integrated Circuit(s) Cards, PC/SC, CCID, RS-232,
RS-TTL, BLE, GATT, CCID

Abstract

File name V:\Dossiers\SpringCard\A-Notices\PCSC\CCID low-level implementation\[PMD15282-CB]
Zero-driver-CCID low-level implementation.odt

Date saved 10/01/19 Date printed 16/04/15

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 3 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

REVISION HISTORY

Ver. Date Author Valid. by Approv.
by

Details

Tech. Qual.

AA 29/07/15 JDA Draft

AB 14/10/15 JDA Fixed a few errors

BA 13/05/16 JDA ASCII version added for serial reader

BB 24/02/17 JDA Title changed from “CCID over Serial and CCID over TCP
implementations” to “Zero-driver – CCID low-level
implementation”
A few typos corrected
Preparing BLE implementation

CA 17/03/17 MBA JDA Added the BLE implementation

CB 11/12/18 JDA JDA New feature on E663 and S663: tampers – and hardware error
notification

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 4 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

CONTENTS

1. INTRODUCTION...6

1.1. ABSTRACT...6
1.2. SUPPORTED PRODUCTS...6
1.3. AUDIENCE...6
1.4. SUPPORT AND UPDATES..7
1.5. RELATED DOCUMENTS..7
1.5.1. CCID standard..7
1.5.2. Developer's guides..7

2. CCID OVER SERIAL – BINARY IMPLEMENTATION.................8

2.1. INTRODUCTION..8
2.2. PHYSICAL LAYER...8
2.3. TRANSPORT LAYER..8
2.3.1. Block format..8
2.3.2. Description of the fields..9
2.3.3. Values for the ENDPOINT field......................................9
2.3.4. Size of the blocks...9
2.3.5. Timeout...9
2.4. COMMAND LAYER..10
2.5. GENERAL COMMUNICATION FLOW..10
2.5.1. Session establishment...10
2.5.2. Operation mode: half-duplex or full-duplex?..............10
2.6. ERROR HANDLING AND RECOVERY..11
2.6.1. For the Coupler...11
2.6.2. For the PC..11
2.6.3. Quick recovery..12

3. CCID OVER SERIAL – ASCII IMPLEMENTATION...................13

3.1. INTRODUCTION..13
3.2. PHYSICAL LAYER...13
3.3. TRANSPORT LAYER..13
3.3.1. Byte representation...13
3.3.2. Block format..14
3.3.3. Start and End Marks..16
3.3.4. Timeout...16
3.4. COMMAND LAYER..17
3.5. GENERAL COMMUNICATION FLOW..17
3.5.1. Session establishment...17
3.5.2. Operation mode: half-duplex or full-duplex?..............17
3.6. ERROR HANDLING AND RECOVERY..18
3.6.1. For the Coupler...18
3.6.2. For the PC..18

4. CCID OVER TCP..19

4.1. TCP LINK...19
4.2. TRANSPORT LAYER..19
4.2.1. Block format..19
4.2.2. Description of the fields..20
4.2.3. Values for the ENDPOINT field....................................20
4.2.4. Size of the blocks...20
4.3. COMMAND LAYER..20
4.4. GENERAL COMMUNICATION FLOW..21

4.4.1. Session establishment...21
4.4.2. Nominal dialogue..21
4.5. ERROR HANDLING AND RECOVERY...21
4.5.1. For the Coupler...21
4.5.2. For the PC..21
4.5.3. Recovery..22

5. CCID OVER BLE..23

5.1. INTRODUCTION..23
5.2. ADVERTISEMENT AND SCAN RESPONSE...................................24
5.2.1. Advertisement frame..24
5.2.2. Scan response frame...24
5.3. GATT PROFILE...24
5.3.1. Standard services..25
5.3.2. CCID Status characteristic..28
5.3.3. CCID BULK_TO_RDR characteristic..............................28
5.3.4. BULK_TO_PC characteristic...29

6. COMMAND LAYER – CONTROL ENDPOINT........................30

6.1. LIST OF CONTROL MESSAGE PAIRS..30
6.2. GET STATUS COMMAND/RESPONSE......................................31
6.3. GET DESCRIPTOR COMMAND/RESPONSE.................................33
6.3.1. Command/response format..33
6.3.2. List of available descriptors...35
6.3.3. Response to a query for an unknown descriptor.........38
6.4. SET CONFIGURATION COMMAND/RESPONSE............................39
6.5. ANSWERS TO UNSUPPORTED MESSAGES..................................42

7. COMMAND LAYER – BULK-OUT ENDPOINT (PC TO RDR
MESSAGES)..43

7.1. LIST OF SUPPORTED/UNSUPPORTED BULK-OUT MESSAGES............43
7.2. BINDING TO THE TRANSPORT LAYERS....................................44
7.3. PC TO RDR MESSAGES...45
7.3.1. PC_To_RDR_IccPowerOn...45
7.3.2. PC_To_RDR_IccPowerOff..46
7.3.3. PC_To_RDR_GetSlotStatus..47
7.3.4. PC_To_RDR_XfrBlock...48
7.3.5. PC_To_RDR_Escape...49

8. COMMAND LAYER – BULK-IN ENDPOINT (RDR TO PC
MESSAGES)..50

8.1. LIST OF SUPPORTED/UNSUPPORTED BULK-IN MESSAGES...............50
8.2. BINDING TO THE TRANSPORT LAYERS....................................51
8.3. RDR TO PC MESSAGES...52
8.3.1. RDR_To_PC_DataBlock..52
8.3.2. RDR_To_PC_SlotStatus..53
8.3.3. RDR_To_PC_Escape...54
8.4. VALUES OF THE STATUS AND ERROR FIELDS.............................55
8.4.1. Slot Status...55
8.4.2. Slot Error...56

9. COMMAND LAYER – INTERRUPT ENPOINT (RDR TO PC
NOTIFICATIONS)..57

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 5 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

9.1. LIST OF SUPPORTED/UNSUPPORTED INTERRUPT MESSAGES............57
9.2. BINDING TO THE TRANSPORT LAYERS....................................57
9.3. DETAILS..59
9.3.1. RDR_To_PC_NotifySlotChange....................................59

10. MAPPING PC/SC CALLS TO PC_TO_RDR / RDR_TO_PC
MESSAGES...61

10.1.1. SCardStatus...61
10.1.2. SCardConnect..61
10.1.3. SCardTransmit...62
10.1.4. SCardDisconnect...62
10.1.5. SCardControl...63

11. CONFIGURATION REGISTERS FOR A SERIAL COUPLER.....64

11.1. OPERATING MODE..64
11.2. UART CONFIGURATION...65

12. CONFIGURATION REGISTERS FOR A TCP COUPLER..........66

12.1. SECURITY OPTIONS..66
12.2. NETWORK CONFIGURATION..67
12.2.1. IPv4 address, mask, and gateway..............................67
12.2.2. TCP server port..67
12.2.3. Ethernet configuration..68
12.2.4. Info / Location...68
12.2.5. Password for Telnet access.......................................68

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 6 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

1. INTRODUCTION

1.1. ABSTRACT

SpringCard's product range could be divided into USB devices on the one hand, and non-USB
devices (serial, TCP over Ethernet) on the other hand.

Since 2009, SpringCard's USB couplers take benefit of a full PC/SC compliance. It is achieved by the
mean of a PC/SC driver (available for Windows and for most UNIX systems, including Linux and
MacOS X), and by compliance with the USB CCID (Chip Card Interface Device) specification.

Starting with firmware version 2.xx, SpringCard's non-USB couplers also provide a new
communication scheme which is consistent with the CCID specification. This new communication
scheme supersedes the legacy “SpringProx” protocol1.

Designed with simplicity and interoperability standards in mind, this CCID implementation aims to
shorten the development and validation times, and paves the way for a new generation of PC/SC
driver using another medium and not USB.

This document is the specification of SpringCard's CCID low-level implementation over Serial, TCP
or BLE links. It provides all the information a developer would need to communicate with a
SpringCard coupler from his application, without going through a complex driver stack.

1.2. SUPPORTED PRODUCTS

At the date of writing, the products covered by this document are

 SpringCard K663 version 2.02 or newer, and all products based on K663 core (K663-232,
K663-TTL, TwistyWriter-232, TwistyWriter-TTL, CSB4.6S, CSB4.6U),

 SpringCard E663 version 2.02 or newer, and all products based on E663 core (FunkyGate IP
PC/SC, FunkyGate IP+POE PC/SC, TwistyWriter IP PC/SC) for the CCID over TCP
implementation,

 Products in the SpringCore’18 family and featuring a Bluetooth Low Energy (BLE) interface
for the CCID over BLE implementation.

1.3. AUDIENCE

This manual is designed for use by application developers. It assumes that the reader has expert
knowledge of computer development and a basic knowledge of PC/SC, of the ISO 7816-4 standard
for smart-cards, and of the NFC Forum's specifications.

1 The SpringProx protocol remains fully available; upward compliance in therefore ensure with systems using the legacy SpringProx
API to communicate with the couplers.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 7 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

1.4. SUPPORT AND UPDATES

Useful related materials (product datasheets, application notes, sample software, HOWTOs and
FAQs…) are available at SpringCard’s web site:

www.springcard.com

Updated versions of this document and others are posted on this web site as soon as they are
available.

For technical support enquiries, please refer to SpringCard support page, on the web at

www.springcard.com/support

1.5. RELATED DOCUMENTS

1.5.1. CCID standard

Reference Publisher Title

[CCID] USB Workgroup Universal Serial Bus
Device Class: Smart-card
Specification for Integrated Circuit(s) Cards Interface
Devices
Rev 1.1 – 22/04/2005

Download link:
http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-
Card_CCID_Rev110.pdf

1.5.2. Developer's guides

Reference Publisher Title

PMD17041 SpringCard PC/SC Couplers – Developer’s Handbook

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
http://www.springcard.com/support
http://www.springcard.com/

PMD15282-CB
page 8 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

2. CCID OVER SERIAL – BINARY IMPLEMENTATION

This chapters concerns the K663 OEM Couplers, and all products based on the K663 core,
starting with firmware version 2.02.

2.1. INTRODUCTION

The CCID over Serial binary implementation is the preferred method for using a SpringCard
Coupler. It provides great performance (in term of communication speed) and could be
implemented with a low footprint on the host-side.

2.2. PHYSICAL LAYER

The physical layer uses a serial asynchronous protocol. The communication is done over a UART.
Default communication parameter are 38400bps, 8 data bits, 1 stop bit, no parity. A different
baudrate could be selected in the coupler's non-volatile configuration.

No flow control is involved, which means that the serial communication uses only 2 lines:

 Coupler's RX line, aka PC_To_RDR,

 Coupler's TX line, aka RDR_To_PC.

If the 2 communication lines are mixed in the underlying medium (RS-485), only the half-duplex
operation mode is available.

If the 2 communication lines are physically separated (RS-232, RS-TLL), the full-duplex operation
mode is also available – and should be preferred.

For more details regarding the operation mode, refer to § 2.5.2.

2.3. TRANSPORT LAYER

2.3.1. Block format

Every block transmitted in the channel is formatted as follow:

START BYTE ENDPOINT HEADER DATA CHECKSUM

1 byte 1 byte 10 byte 0 to 262 bytes 1 byte

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 9 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

2.3.2. Description of the fields

Field Description

START BYTE The START BYTE is the constant value hCD

ENDPOINT The ENDPOINT byte is used to convey the CCID HEADER and DATA to the
appropriate target service (as the USB endpoint feature does).

HEADER For Bulk-Out and Bulk-In messages, the 10-B HEADER field follows [CCID].
For all the other messages, a proprietary format is defined.

DATA For Bulk-Out and Bulk-In messages, the DATA field follows [CCID].
For all the other messages, a proprietary format is defined.

CHECKSUM The CHECKSUM field is a XOR computed over all the bytes in the ENDPOINT,
HEADER and DATA fields.

2.3.3. Values for the ENDPOINT field

Value Symbolic name Understanding
h00 CONTROL_TO_RDR Control Endpoint (orders and queries from PC to RDR)
h80 CONTROL_TO_PC Control Endpoint (answers from RDR to PC)
h81 BULK_TO_PC Bulk-In Endpoint (RDR_to_PC responses)
h02 BULK_TO_RDR Bulk-Out Endpoint (PC_to_RDR commands)
h83 INTERRUPT_TO_PC Interrupt Endpoint (notifications from RDR to PC)

2.3.4. Size of the blocks

The size of every block can't be less than 13 bytes.

The size of every block can't exceed 275 bytes.

2.3.5. Timeout

When the Start Byte is received, the Coupler opens a 500ms time window. The host must transmit
an entire block within this time window, otherwise the block is discarded.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 10 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

2.4. COMMAND LAYER

Chapter 6, 7, 8 and 9 contain the documentation of the Command Layer.

Chapter 10 and document [PMD15305] explain how to use the Coupler once the protocol is
correctly implemented.

2.5. GENERAL COMMUNICATION FLOW

2.5.1. Session establishment

The PC tries to connect to the Coupler over a serial link by sending GET DESCRIPTOR commands (§
6.3).

Once a Coupler has been found, the PC queries all the Coupler's descriptors, and, when ready,
starts the Coupler using the SET CONFIGURATION command (§ 6.4).

No communication could occur on the Bulk-In, Bulk-Out or Interrupt endpoints before the SET
CONFIGURATION command has been issued by the PC and acknowledged by the Coupler.

2.5.2. Operation mode: half-duplex or full-duplex?

Depending on the underlying hardware, the serial link could be either half-duplex (RS-485) or full-
duplex (RS-232, RS-TTL).

On a half-duplex medium, collisions must be avoided. The protocol is of request/response type: a
RDR_To_PC frame could occur only as a response to a PC_To_RDR frame. As a consequence,
there's no way for the Coupler to notify the PC when a card is inserted or removed. The PC must
therefore “poll” the Coupler, by sending the PC_To_RDR_GetSlotStatus (§ 7.3.3) command as
often as possible.

On a full-duplex medium, there's no risk of collision. The request/response protocol is enhanced
by so-called interrupt frames (§ 9.3.1) to notify the PC when a card is inserted or removed. This
operation mode dramatically lowers down the workload on the PC.

It's the responsibility of the PC to select the proper operation mode when sending SET
CONFIGURATION command (§ 6.4).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 11 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

2.6. ERROR HANDLING AND RECOVERY

2.6.1. For the Coupler

 Malformed frame, Protocol violation: in case it receives a block that doesn't obey to the
block-formatting rules, the Coupler discard the block and remain silent,

 Communication timeout: if the PC takes more than 1000ms to send a block, the Coupler
discard the block and remain silent.

2.6.2. For the PC

 Malformed frame, Protocol violation: in case it receives a block that doesn't obey to the
block-formatting rules, the PC shall wait 2000ms, flush its input buffer, and run the Session
establishment procedure again (§ 2.5.1),

 Communication timeout: if the Coupler takes more than 1000ms to send a block (time
between the Start Byte and the CRC), the PC shall wait at least 2000ms, flush its input
buffer, and run the Session establishment procedure again (§ 2.5.1),

 Processing timeout: the Coupler starts its answer (Start Byte) within 500ms for the
commands sent to the Control Endpoint (CONTROL_TO_RDR), and within 1500ms for the
commands sent to the Bulk-Out Endpoint (BULK_TO_RDR). If the Coupler doesn't answer
within the specified time, the PC shall wait at least 2000ms, flush its input buffer, and run
the Session establishment procedure again (§ 2.5.1).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 12 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

2.6.3. Quick recovery

Instead of waiting 2000ms before running the Session establishment procedure again, the PC may

1. Reset the Coupler by setting the Coupler's /RESET pin to LOW level during at least 2ms,

2. Wait for the Coupler's startup string on the serial line (constant “K663”)2,

3. Wait 50ms after the end of the startup string,

4. Run the Session establishment procedure.

2 The time between the reset and the arrival of the “K663” startup string depends on how the bootloader is configured in the
device. The host software shall be prepared to wait up to 1500ms to accommodate every configuration of the bootloader, but with
the standard configuration the K663 starts in less than 75ms.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 13 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

3. CCID OVER SERIAL – ASCII IMPLEMENTATION

This chapters concerns the K663 OEM Couplers, and all products based on the K663 core,
starting with firmware version 2.06.

3.1. INTRODUCTION

The CCID over Serial binary implementation is an alternative method for interfacing a SpringCard
CCID Serial Coupler. It is less efficient than the binary implementation, but is easier to implement
“manually” or through scripting.

3.2. PHYSICAL LAYER

The physical layer uses a serial asynchronous protocol. The communication is done over a UART.
Default communication parameter are 38400bps, 8 data bits, 1 stop bit, no parity. A different
baudrate could be selected in the coupler's non-volatile configuration.

No flow control is involved, which means that the serial communication uses only 2 lines:

 Coupler's RX line, aka PC_To_RDR,

 Coupler's TX line, aka RDR_To_PC.

If the 2 communication lines are mixed in the underlying medium (RS-485), only the half-duplex
operation mode is available.

If the 2 communication lines are physically separated (RS-232, RS-TLL), the full-duplex operation
mode is also available – and should be preferred.

For more details regarding the operation mode, refer to § 3.5.2.

3.3. TRANSPORT LAYER

3.3.1. Byte representation

Every byte is transmitted as two hexadecimal characters.

The Coupler transmits in upper case (digits are '0', '1', … 'A', … 'F').

The PC may transmit either in upper case ('0' … 'A' … 'F') or in lower case ('0' … 'a' … 'f').

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 14 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

3.3.2. Block format

To make the protocol less verbose (and as a consequence more easy to read or write for a
human), unnecessary fields are suppressed:

 The ENDPOINT is not transmitted – it could be easily inferred from the Message Type

 There's no Length field in the HEADER – the frame is terminated by an explicit END MARK

 The HEADER itself is truncated to keep only the minimal amount of bytes that are required
to understand the Request.

As a consequence, there's not a single block format but 3 block formats, corresponding to a group
of Requests, and tailored for this very group.

a. Block format – CONTROL

This block format is applicable for both CONTROL_TO_RDR and CONTROL_TO_PC ENDPOINTs, i.e.
to messages

 GET STATUS

 GET DESCRIPTOR

 SET CONFIGURATION

START
MARK

Message
Type

Control
Header

Data END
MARK

1 char 1 byte
(2 hex chars)

6 bytes
(12 hex chars)

0 to 262 bytes
(2 to 524 hex chars)

1 or 2
chars

The Control Header contains only the fields Value_L, Value_H, Index_L, Index_H and Option of the
actual HEADER.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 15 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

b. Block format – BULK

This block format is applicable for both BULK_TO_RDR and BULK_TO_PC ENDPOINTs, i.e. to
messages

 PC_To_RDR_IccPowerOn

 PC_To_RDR_IccPowerOff

 PC_To_RDR_GetSlotStatus

 PC_To_RDR_Escape

 PC_To_RDR_XfrBlock

 RDR_To_PC_DataBlock

 RDR_To_PC_SlotStatus

 RDR_To_PC_Escape

START
MARK

Message
Type

Bulk
Header

Data END
MARK

1 char 1 byte
(2 hex chars)

1 byte
(2 hex chars)

0 to 262 bytes
(2 to 524 hex chars)

1 or 2
chars

For PC_To_RDR… messages, the Bulk Header contains only the field Slot Number of the actual
HEADER.

For RDR_To_PC… messages, the Bulk Header contains only the field Slot Status of the actual
HEADER.

c. Block format – INTERRUPT

This block format is applicable for the INTERRUPT_TO_PC ENDPOINT, i.e. only to message
PC_To_RDR_NotifySlotChange.

START
MARK

Message
Type

Data END
MARK

1 char 1 byte
(2 hex chars)

1 byte
(2 hex chars)

1 or 2
chars

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 16 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

3.3.3. Start and End Marks

Field Description

START MARK The START MARK is the constant value '^' (caret, h5E)

END MARK For messages going from the PC to the Coupler, the END MARK may be either '\r'
(carriage return, h0D), '\n' (line feed, h0A), or both.
For messages going from the Coupler to the PC, the END MARK is '\r' (h0D)
followed by '\n' (h0A).

3.3.4. Timeout

There's no timeout.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 17 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

3.4. COMMAND LAYER

Chapter 6, 7, 8 and 9 contain the documentation of the Command Layer.

Chapter 10 and document [PMD15305] explain how to use the Coupler once the protocol is
correctly implemented.

3.5. GENERAL COMMUNICATION FLOW

3.5.1. Session establishment

The PC tries to connect to the Coupler over a serial link by sending GET DESCRIPTOR commands (§
6.3).

Once a Coupler has been found, the PC queries all the Coupler's descriptors, and, when ready,
starts the Coupler using the SET CONFIGURATION command (§ 6.4).

No communication could occur on the Bulk-In, Bulk-Out or Interrupt endpoints before the SET
CONFIGURATION command has been issued by the PC and acknowledged by the Coupler.

3.5.2. Operation mode: half-duplex or full-duplex?

Depending on the underlying hardware, the serial link could be either half-duplex (RS-485) or full-
duplex (RS-232, RS-TTL).

On a half-duplex medium, collisions must be avoided. The protocol is of request/response type: a
RDR_To_PC frame could occur only as a response to a PC_To_RDR frame. As a consequence,
there's no way for the Coupler to notify the PC when a card is inserted or removed. The PC must
therefore “poll” the Coupler, by sending the PC_To_RDR_GetSlotStatus (§ 7.3.3) command as
often as possible.

On a full-duplex medium, there's no risk of collision. The request/response protocol is enhanced
by so-called interrupt frames (§ 9.3.1) to notify the PC when a card is inserted or removed. This
operation mode dramatically lowers down the workload on the PC.

It's the responsibility of the PC to select the proper operation mode when sending SET
CONFIGURATION command (§ 6.4).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 18 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

3.6. ERROR HANDLING AND RECOVERY

3.6.1. For the Coupler

 Malformed frame, Protocol violation: in case it receives a block that doesn't obey to the
block-formatting rules, the Coupler sends a NAK char (h15).

3.6.2. For the PC

 Malformed frame, Protocol violation: in case it receives a block that doesn't obey to the
block-formatting rules, the PC shall wait 2000ms, flush its input buffer, and run the Session
establishment procedure again (§ 3.5.1),

 Processing timeout: the Coupler starts its answer (Start Byte) within 500ms for the
commands sent to the Control Endpoint (CONTROL_TO_RDR), and within 1500ms for the
commands sent to the Bulk-Out Endpoint (BULK_TO_RDR). If the Coupler doesn't answer
within the specified time, the PC shall wait at least 2000ms, flush its input buffer, and run
the Session establishment procedure again (§ 3.5.1).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 19 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

4. CCID OVER TCP

This chapters concerns the E663 OEM Couplers, and all products based on the E663 core.

4.1. TCP LINK

The SpringCard network-attached PC/SC Coupler is a TCP Server, and the Host is the Client.

Note that the Coupler is not able to accept more than one Client at the time. Trying to connect
to the same Coupler from two different Host is not supported, and shall not be tried. An
undefined behaviour may occur.

This Transport Layer is designed to support the transmission of variable-length blocks. The
session-establishment makes it possible for both partners to check they are running the same
protocol.

4.2. TRANSPORT LAYER

4.2.1. Block format

Every block transmitted in the channel is formatted as follow:

ENDPOINT HEADER DATA

1 byte 10 byte 0 to 262 bytes

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 20 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

4.2.2. Description of the fields

Field Description

ENDPOINT The ENDPOINT byte is used to route the CCID HEADER and DATA to the
appropriate target service (as the USB endpoint feature does).

HEADER For Bulk-Out and Bulk-In messages, the 10-B HEADER field follows [CCID].
For all the other messages, a proprietary format is defined.

DATA For Bulk-Out and Bulk-In messages, the DATA field follows [CCID].
For all the other messages, a proprietary format is defined.

4.2.3. Values for the ENDPOINT field

Value Name Understanding
h00 CONTROL_TO_RDR Control Endpoint (orders and queries from PC to RDR)
h80 CONTROL_TO_PC Control Endpoint (answers from RDR to PC)
h81 BULK_TO_PC Bulk-In Endpoint (RDR_to_PC responses)
h02 BULK_TO_RDR Bulk-Out Endpoint (PC_to_RDR commands)
h83 INTERRUPT_TO_PC Interrupt Endpoint (notifications from RDR to PC)

4.2.4. Size of the blocks

The size of every block can't be less than 11 bytes.

The size of every block can't exceed 273 bytes in plain communication.

4.3. COMMAND LAYER

Chapter 6, 7, 8 and 9 contain the documentation of the Command Layer.

Chapter 10 and document [TBD] explains how to use the Coupler once the protocol is correctly
implemented.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 21 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

4.4. GENERAL COMMUNICATION FLOW

4.4.1. Session establishment

The PC tries to connect to one (or many) Couplers.

When a connection is established on the Coupler, the PC queries the Coupler's descriptors, and,
when ready, starts the Coupler using the SET CONFIGURATION command (§ 6.4).

No communication could occur on the Bulk-In, Bulk-Out or Interrupt endpoints before the SET
CONFIGURATION command has been issued by the PC and acknowledged by the Coupler.

4.4.2. Nominal dialogue

The TCP channel is full-duplex; both the Coupler and the PC may send at any time, and therefore
must be ready to receive at any time.

The PC may send GET STATUS commands to monitor the link (§ 6.2). The Coupler then sends a GET
STATUS response within 500ms max.

4.5. ERROR HANDLING AND RECOVERY

4.5.1. For the Coupler

 Too many hosts: when receiving a valid SET CONFIGURATION command, the Coupler drops
any previous connection,

 Malformed frame, Protocol violation: in case it receives a frame that doesn't obey to the
block-formatting rules, the Coupler drops the connection,

 No activity error: if the PC remains silent for 120s, the Coupler drops the connection.

4.5.2. For the PC

 Malformed frame, Protocol violation: in case it receives a frame that doesn't obey to the
block-formatting rules, the PC shall drop the connection,

 Timeout error: if the PC doesn't receive an answer to a GET STATUS command within 1s +
(estimated network time), the PC shall drop the connection.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 22 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

4.5.3. Recovery

If the connection is dropped for any reason, the PC shall wait at least 5s before trying to connect
again to the same Coupler.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 23 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

5. CCID OVER BLE

This chapters concerns the products featuring a Bluetooth Low Energy (BLE) interface. The BLE
interface shall be loaded with the firmware implementing the CCID GATT documented below.

5.1. INTRODUCTION

The SpringCard BLE PC/SC Coupler is a Bluetooth LE Device (it advertises its presence) and a GATT
Server (it exposes its services through characteristics).The smartphone, tablet or computer that
uses the SpringCard BLE PC/SC Coupler (in short, the Host) is a Bluetooth LE Central, and a GATT
Client. The Central and the Device shall communicate in Bonded mode.

The CCID over BLE implementation has noticeable differences with the Serial and TCP counterparts
(and with USB of course):

 Only the two BULK_TO_RDR and BULK_TO_PC endpoints are implemented “as is” through
GATT characteristics;

 The endpoints CONTROL_TO_RDR and CONTROL_TO_PC have no equivalent, because the
same features are already offered by other means in BLE:

▪ The GET DESCRIPTOR command is replaced by the Device GAP and the GATT Device
Information Service,

▪ The SET CONFIGURATION command is replaced by the BLE protocol itself (the
coupler starts running as soon as a BLE Client connects, and stops when the
connection is closed or lost),

 The endpoint INTERRUPT_TO_PC is mapped to a specific CCID Status characteristics (5.3.2),
which convey both the card presence information and the “BULK_TO_PC is ready”
notification.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 24 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

5.2. ADVERTISEMENT AND SCAN RESPONSE

5.2.1. Advertisement frame

The advertisement frame is implemented as follow:

Descriptor #1 Descriptor #2

Len Type Data Len Type Data
h02 h01 h05 h11 h16 H6A BF 51 A3 07 8F 3A 9C

30 4C F2 86 AC 42 A4 BB

Flags Record - LE Limited
Discoverable Mode
- No BR/EDR (BLE only)

Incomplete list of
128-bit Service
Class UUIDs Record

UUID of the SpringCard CCID
Service

5.2.2. Scan response frame

Descriptor #1

Len Type Data
h14 h09 h53 6F 63 6B 65 74 20 44 36 30 30 20 xx xx xx xx xx xx

Complete Local
Name Record

“Product Name xxxxxx”
where xx..xx are the last 3 bytes of the BT_ADDR, expressed in hexadecimal
Android uses this field to show the product to the user.

5.3. GATT PROFILE

The following pages detail the GATT profile of the product.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 25 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

5.3.1. Standard services

UUID Mnemonic Access Description

Generic Access Profile

1800 org.bluetooth.service.generic_access

2A00 org.bluetooth.characteristic.gap.device_name Read “Product Name XXXXXX”
where XXXXXX are the last 3 bytes of the BT_ADDR,
expressed in hexadecimal
IOS could use this field for display.

2A01 org.bluetooth.characteristic.gap.appearance Read h00 00 (unknown)

PMD15282-CB
page 26 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

UUID Mnemonic Access Description

Device Information

180A org.bluetooth.service.device_information

2A29 org.bluetooth.characteristic.manufacturer_name_string Read “Springcard”
(not changeable)

2A24 org.bluetooth.characteristic.model_number_string Read “Product Name”
(not changeable)

2A25 org.bluetooth.characteristic.serial_number_string Read “xxxxxxxxxxxx”
(BT_ADDR in hex)

2A26 org.bluetooth.characteristic.firmware_revision_string Read

The version of the BlueGecko stack in the
BGG113/BGM11
“xxxx yyyy zzzz”
(major version, minor version, patch level)

2A28 org.bluetooth.characteristic.software_revision_string Read “MM.mm PCSC 01”
2A50 org.bluetooth.characteristic.pnp_id Read Vendor ID Source = h02

Vendor ID = h1C34
Product ID = hABD0
Product Version = hMMmm

PMD15282-CB
page 27 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

UUID Mnemonic Access Description

Battery level

180F org.bluetooth.service.battery

2A19 org.bluetooth.characteristic.battery_level Read Battery level, 0 to 100 %

Service changed

1801 org.bluetooth.service.generic_attribute

2A05 org.bluetooth.characteristic.gatt.service_changed Read, Indicate Tell the host to refresh its cache

PMD15282-CB
page 28 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

5.3.2. CCID Status characteristic

UUID Name Type Size Access

7C334BC2-1812-4C7E-A81D-591F92933C37 CCID Status byte 2 Read, indicate

The CCID Status characteristic is a BYTE array holding 3 informations:

• The number of installed slots (1 for a single contactless coupler),

• The fact that there’s a card present in every slot, or not,

• The fact that the Host shall read a response from the CCID BULK_TO_PC characteristic.

The CCID Status characteristic is indicated, which means that the Host receives a notification from
the Device everytime the value changes.

Bits Value Meaning
Byte 0 – Number of slots and response bit

7 b1
b0

There’s a response to read in CCID BULK_TO_PC
No response

6 - 4 RFU
3 - 0 b0001 Number of slots present into the device

Byte 1 – Slots state
7 - 0 One bit per slot b1 if there is a card on the slot else b0

5.3.3. CCID BULK_TO_RDR characteristic

UUID Name Type Size Access

91ACE9FD-EDD6-40B1-BA77-050A78CF9BC0 BULK_TO_RDR byte Long
write

Write

The BULK_TO_RDR characteristic is used to send a CCID command to the Device, exactly as this is
the case of the BULK_TO_RDR endpoint in other implementations.

The endpoint byte (1st byte) shall not be transmitted (transmission starts with Message Type
byte).

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 29 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

5.3.4. BULK_TO_PC characteristic

UUID Name Type Size Access

B4CA2D75-B855-4C1A-BF40-4A72AE46BD5A BULK_TO_PC byte Long
read

Read

The BULK_TO_PC characteristic is used to read a CCID response from the Device, exactly as this is
the case of the BULK_TO_PC endpoint in other implementations.

The endpoint byte (1st byte) is not transmitted (transmission starts with Message Type byte).

The Host shall not poll this characteristic. The Device will set bit 7 in CCID Status (5.3.2) and notify
the Host (BLE indicate feature) as soon as the response is ready.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 30 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6. COMMAND LAYER – CONTROL ENDPOINT

The commands/responses described in this chapter are proprietary, yet inspired for the largest
part by the USB Specification [USB].

6.1. LIST OF CONTROL MESSAGE PAIRS

ID Control request See
h00 GET STATUS 6.2
h06 GET DESCRIPTOR 6.3
h09 SET CONFIGURATION 6.4

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 31 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6.2. GET STATUS COMMAND/RESPONSE

The GET STATUS command/response pair is used to monitor the link.

a. GET STATUS command format

GET STATUS command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h00 CONTROL_TO_RDR

1 Message Type 1 h00 GET_STATUS

2 Data Length 4 h00000000 Data field is empty

6 Value_L, Value_H 2 h0000 Not used

8 Index_L, Index_H 2 h0000 Not used

10 Option 1 h00 Not used

GET STATUS command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h00 GET_STATUS

1 Value_L, Value_H 2 h0000 Not used

3 Index_L, Index_H 2 h0000 Not used

5 Option 1 h00 Not used

b. GET STATUS response format

GET STATUS response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h80 CONTROL_TO_PC

1 Message Type 1 h00 GET_STATUS

2 Data Length 4 h00000000 Data field is empty

6 Value_L, Value_H 2 h0000 Not used

8 Index_L, Index_H 2 h0000 Not used

10 Status 1 Reader status or error code.
See § c below.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 32 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

GET STATUS response format – ASCII protocols

Offset Field Size Value Description / remark

0 Message Type 1 h00 GET_STATUS

1 Value_L, Value_H 2 h0000 Not used

3 Index_L, Index_H 2 h0000 Not used

5 Status 1 Reader status or error code.
See § c below.

c. Value of the Status byte in GET STATUS response

Status byte Description Possible cause

Success
h00 OK (answer to GET_STATUS command)

Not-fatal errors (the link remains active)
h01 Error Unsupported Control command

Fatal errors (the RDR closes the link)
hFC Overrun The PC sends a new Bulk In command while

a Bulk In command is already pending
hFD Denied The PC sends Bulk In command but is not the

'owner' of the RDR (SET_CONFIGURATION
must be called before)

hFE Overflow The Bulk In command is too long for the
RDR's buffer

hFF Protocol error - The PC sends a command to an invalid
endpoint
- The PC sends a mal-formed frame

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 33 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6.3. GET DESCRIPTOR COMMAND/RESPONSE

The GET STATUS command/response pair is used to detect the Coupler and retrieve its
information.

6.3.1. Command/response format

a. GET DESCRIPTOR command format

GET DESCRIPTOR command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h00 CONTROL_TO_RDR

1 Message Type 1 h06 GET_DESCRIPTOR

2 Data Length 4 h00000000 Data field is empty

6 Value_L 1 Descriptor Type

7 Value_H 1 Descriptor Index

3 Index_L, Index_H 2 h0000 Not used

10 Option 1 h00 Not used

GET DESCRIPTOR command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h06 GET_DESCRIPTOR

1 Value_L 1 Descriptor Type

2 Value_H 1 Descriptor Index

3 Index_L, Index_H 2 h0000 Not used

5 Option 1 h00 Not used

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 34 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

b. GET DESCRIPTOR response format

GET DESCRIPTOR response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h80 CONTROL_TO_PC

1 Message Type 1 h06 GET_DESCRIPTOR

2 Data Length 4 The length of the Descriptor (L)

6 Value_L 1 Same as Descriptor Type specified by the PC

7 Value_H 1 Same as Descriptor Index specified by the PC

3 Index_L, Index_H 2 h0000 Not used

10 Status 1 h00 Not used

11 Data L The content of the Descriptor

GET DESCRIPTOR response format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h06 GET_DESCRIPTOR

1 Value_L 1 Same as Descriptor Type specified by the PC

2 Value_H 1 Same as Descriptor Index specified by the PC

3 Index_L, Index_H 2 h0000 Not used

5 Status 1 h00 Not used

6 Data L The content of the Descriptor

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 35 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6.3.2. List of available descriptors

Value_L Value_H Retrieves See

Descr. Type Descr. Index
h01 h00 The Device descriptor 6.3.2.a
h02 h00 The Configuration descriptor 6.3.2.b
h03 h01 The Vendor Name (“SpringCard”)
h03 h02 The Product Name
h03 h03 The Product Serial Number

String descriptors (Vendor Name, Product Name, Product Serial Number) are returned in UTF16.

a. The Device descriptor

The Device descriptor is defined as follow:

Offset Field Size Value Description / remark

0 Size 1 h12

1 Type 1 h01 This is a Device descriptor

2 USB version 2 h0200 Don't care

4 Class 1 h00

5 SubClass 1 h00

6 Protocol 1 h00

7 MaxPacketSize0 1 h00 Don't care

8 Vendor ID 2 h1C34 Pro Active / SpringCard

10 Product ID 2 The Product ID

12 Version 2 The Firmware Version

14 iManufacturer 1 h01 Index of the Vendor Name string

15 iProduct 1 h02 Index of the Product Name string

16 iSerialNumber 1 h03 Index of the Product Serial Number
string

17 Configurations 1 h01 Only one configuration supported

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 36 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

b. The Configuration descriptor

The Configuration descriptor is defined as follow:

Offset Field Size Value Description / remark

Configuration part

0 Size 1 h09

1 Type 1 h02 This is a Configuration descriptor

2 Total size 2

4 Interfaces 1 h01 Only one interface

5 Configuration 1 h01 This is the first (and single) configuration

6 iConfiguration 1 h00 No string to describe the Configuration

7 Attributes 1 h00 Don't care

8 MaxPower 1 h00 Don't care

Interface part

9 Size 1 h09

10 Type 1 h04 This is an Interface descriptor

11 Interface 1 h00 Interface number = 0

12 AlternateSettings 1 h00 Don't care

13 Endpoints 1 h03 3 endpoints

14 Class 1 h0B Class is CCID

15 SubClass 1 h00

16 Protocol 1 h00

17 iInterface 1 h00 No string to describe the Interface

CCID-specific part

18 Size 1 h36

19 Type 1 h21 Specific to CCID

20 Version 2 h0110 Version of CCID implementation (1.10)

22 MaxSlotIndex 1 The number of CCID slots, minus 1

23 VoltageSupport 1

24 Protocols 4 h00000003 Supports T=0 and T=1

28 DefaultClock 4 h0000A00F Default clock is 4MHz (dummy value)

32 MaximumClock 4 h0000A00F Manimum clock is 4MHz (dummy value)

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 37 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

36 NumClockSupported 1 h00

37 DataRate 4

41 MaxDataRate 4

45 NumDataRateSupported 1

46 MaxIFSD 4

50 SynchProtocols 4

54 Mechanical 4

58 Features 4

62 MaxCCIDMessageLength 4

66 ClassGetResponse 1 hFF

67 ClassEnvelope 1 hFF

68 LcdLayout 2 h0000

70 PinSupport 1 h00

71 MaxCCIDBusySlot 1 h01

1st endpoint (Bulk In)

72 Size 1 h07

73 Type 1 h05 This is an Endpoint descriptor

74 Address 1 h81 EP1, RDR to PC

75 Attributes 1 h02 Bulk

76 MaxPacketSize 2 h0118 Up to 280 bytes

78 Interval 1 h00 Don't care

2nd endpoint (Bulk Out)

72 Size 1 h07

73 Type 1 h05 This is an Endpoint descriptor

74 Address 1 h02 EP2, PC to RDR

75 Attributes 1 h02 Bulk

76 MaxPacketSize 2 h0118 Up to 280 bytes

78 Interval 1 h00 Don't care

3rd endpoint (Interrupt In)

72 Size 1 h07

73 Type 1 h05 This is an Endpoint descriptor

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 38 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

74 Address 1 h83 EP3, RDR to PC

75 Attributes 1 h03 Interrupt

76 MaxPacketSize 2 h0118 Up to 280 bytes

78 Interval 1 h01 Don't care

6.3.3. Response to a query for an unknown descriptor

If the Coupler receives a query for and unknown descriptor, it returns a GET DESCRIPTOR response
with no data.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 39 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6.4. SET CONFIGURATION COMMAND/RESPONSE

The SET CONFIGURATION command/response pair is used to start the Coupler (specifying the
operation mode) or to stop it afterwards.

a. SET CONFIGURATION command format

SET CONFIGURATION command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h00 CONTROL_TO_RDR

1 Message Type 1 h09 SET_CONFIGURATION

2 Data Length 4 h00000000 Data field is empty

6 Value_L 1 h00

7 Value_H 1 h01 to start the Coupler
h00 to stop the Coupler

8 Index 2 h0000 Not used

10 Option 1 Serial Coupler:
h00 half-duplex operation mode
h01 full-duplex operation mode
h02 RFU, do not use
h03 full-duplex operation mode, LPCD
TCP Coupler:
h00 all other values are RFU

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 40 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

SET CONFIGURATION command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h09 SET_CONFIGURATION

1 Value_L 1 h00

2 Value_H 1 h01 to start the Coupler
h00 to stop the Coupler

3 Index_L, Index_H 2 h0000 Not used

5 Option 1 Serial RDR:
h00 half-duplex operation mode
h01 full-duplex operation mode
h03 full-duplex operation mode, LPCD
TCP RDR: not available

b. SET CONFIGURATION response format

SET CONFIGURATION response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h80 CONTROL_TO_PC

1 Message Type 1 h09 SET_CONFIGURATION

2 Data Length 4 h00000000 Data field is empty

6 Value_L 1 h00

7 Value_H 1 Same as the Value specified by the PC

8 Index_L, Index_H 2 h0000 Not used

10 Status 1 h00 Coupler is stopped
h01 Coupler is running
hFF An error has occurred

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 41 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

SET CONFIGURATION response format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h09 SET_CONFIGURATION

1 Value_L 1 h00

2 Value_H 1 Same as the Value specified by the PC

3 Index_L, Index_H 2 h0000 Same as the Index specified by the PC

5 Status 1 h00 Coupler is stopped
h01 Coupler is running
hFF An error has occurred

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 42 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

6.5. ANSWERS TO UNSUPPORTED MESSAGES

Binary protocols

If the Coupler receives an unsupported command, or a command with invalid parameters, it sends
a GET STATUS response claiming an error, as follow:

Offset Field Size Value Description / remark

0 ENDPOINT 1 h80 CONTROL_TO_PC

1 Message Type 1 h00 GET_STATUS

2 Data Length 4 h00000000 Data field is empty

6 Value 2 h0000 Not used

8 Index 2 h0000 Not used

10 Status 1 hFF Unsupported command

ASCII protocols

The Coupler sends a NAK byte.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 43 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7. COMMAND LAYER – BULK-OUT ENDPOINT (PC TO RDR MESSAGES)

All Bulk-Out commands described in this chapter are documented with more details in the CCID
Specifications [CCID].

7.1. LIST OF SUPPORTED/UNSUPPORTED BULK-OUT MESSAGES

ID Command message See Response message Supported
h61 PC_To_RDR_SetParameters û

h62 PC_To_RDR_IccPowerOn 7.3.1 RDR_To_PC_DataBlock ü

h63 PC_To_RDR_IccPowerOff 7.3.2 RDR_To_PC_SlotStatus ü

h65 PC_To_RDR_GetSlotStatus 7.3.3 RDR_To_PC_SlotStatus ü

h69 PC_To_RDR_Secure û

h6A PC_To_RDR_T0APDU û

h6B PC_To_RDR_Escape 7.3.5 RDR_To_PC_Escape ü

h6C PC_To_RDR_GetParameters û

h6D PC_To_RDR_ResetParameters û

h6E PC_To_RDR_IccClock û

h6F PC_To_RDR_XfrBlock 7.3.4 RDR_To_PC_DataBlock ü

h71 PC_To_RDR_Mechanical û

h72 PC_To_RDR_Abort û

h73 PC_To_RDR_SetDataRateAnd
ClockFrequency

û

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 44 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.2. BINDING TO THE TRANSPORT LAYERS

a. Binding to the Serial binary Transport

For a Serial communication using the binary protocol, the Bulk-Out message is sent by the PC to
the Coupler in the following format:

START BYTE ENDPOINT CCID message CHECKSUM
hCD h02 10 + (0 to 262) bytes 1 byte

b. Binding to the Serial ASCII Transport

For a Serial communication using the ASCII protocol, the Bulk-Out message is sent by the PC to the
Coupler in the following format:

START
MARK

Modified CCID message END
MARK

'^' 2 to 264 bytes
(4 to 528 hex chars)

'\r' or '\n'
or “\r\n”

c. Binding to the TCP binary Transport

For a TCP communication, the Bulk-Out message is sent by the PC to the Coupler in the following
format:

ENDPOINT CCID message
h02 10 + (0 to 262) bytes

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 45 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.3. PC TO RDR MESSAGES

7.3.1. PC_To_RDR_IccPowerOn

The PC_to_RDR_IccPowerOn command allows to power up the card, and retrieve its ATR. This is
the equivalent of the SCardConnect command in the PC/SC world.

If the card is present and has been correctly powered up, the response to this command is the
RDR_to_PC_DataBlock message (§ 8.3.1); the Data returned is the card's ATR (Answer To Reset).

If there's no card in the slot, or the Coupler has failed to power up the card, the response to this
command is the RDR_to_PC_SlotStatus message (§ 8.3.2).

PC_To_RDR_IccPowerOn command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h02 BULK_PC_TO_RDR

1 Message Type 1 h62 PC_TO_RDR_ICCPOWERON

2 Data Length 4 h00000000

6 Slot Number 1 h00 for contactless slot

7 Sequence 1 Sequence number assigned by the PC

8 Power Select 1 h00 Automatic Voltage Selection only

9 RFU 2 h0000 Reserved for future use

PC_To_RDR_IccPowerOn command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h62 PC_TO_RDR_ICCPOWERON

1 Slot Number 1 h00 for contactless slot

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 46 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.3.2. PC_To_RDR_IccPowerOff

The PC_to_RDR_IccPowerOn command allows to power down the card. This is the equivalent of
the SCardDisconnect command in the PC/SC world.

The response to this command is the RDR_to_PC_SlotStatus message (§ 8.3.2).

PC_To_RDR_IccPowerOff command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h02 BULK_PC_TO_RDR

1 Message Type 1 h63 PC_TO_RDR_ICCPOWEROFF

2 Data Length 4 h00000000

6 Slot Number 1 h00 for contactless slot

7 Sequence 1 Sequence number assigned by the PC

8 RFU 3 h000000 Reserved for future use

PC_To_RDR_IccPowerOff command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h63 PC_TO_RDR_ICCPOWEROFF

1 Slot Number 1 h00 for contactless slot

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 47 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.3.3. PC_To_RDR_GetSlotStatus

The PC_to_RDR_GetSlotStatus command allows to retrieve the status of a slot (whether a card is
present, powered or unpowered, or absent). This is the equivalent of the SCardStatus command in
the PC/SC world.

The response to this command is the RDR_to_PC_SlotStatus message (§ 8.3.2).

When the half-duplex operation mode is used, the PC must send PC_To_RDR_GetSlotStatus as
often as possible to know whether a card has been inserted or removed.
When the full-duplex operation mode is used, the PC is notified of the insertions and removals
by the RDR_To_PC_NotifySlotChange message (§ 9.3.1).

PC_To_RDR_GetSlotStatus command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h02 BULK_PC_TO_RDR

1 Message Type 1 h65 PC_TO_RDR_GETSLOTSTATUS

2 Data Length 4 h00000000

6 Slot Number 1 h00 for contactless slot

7 Sequence 1 Sequence number assigned by the PC

8 RFU 3 h000000 Reserved for future use

PC_To_RDR_GetSlotStatus command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h65 PC_TO_RDR_GETSLOTSTATUS

1 Slot Number 1 h00 for contactless slot

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 48 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.3.4. PC_To_RDR_XfrBlock

The PC_to_RDR_XfrBlock command allows to send a C-APDU to a card – or to the Coupler's APDU
interpreter, and receive its R-APDU. This is the equivalent of the SCardTransmit command in the
PC/SC world.

If a valid R-APDU is returned by the card – or by the Coupler's APDU interpreter, the response to
this command is the RDR_to_PC_DataBlock message (§ 8.3.1); the Data returned is the R-APDU.

If there's no card in the slot, or the Coupler has failed to communicate with the card, the response
to this command is the RDR_to_PC_SlotStatus message (§ 8.3.2).

PC_To_RDR_XfrBlock command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h02 BULK_PC_TO_RDR

1 Message Type 1 h6F PC_TO_RDR_XFRBLOCK

2 Data Length 4 Size of the Data field of this message

6 Slot Number 1 h00 for contactless slot

7 Sequence 1 Sequence number assigned by the PC

8 BWI 1 h00 Not used

9 Level Parameter 2 h0000 Not used

11 Data Var. C-APDU to send to the card.
Only a maximum length of 262 bytes is
supported

PC_To_RDR_XfrBlock command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h6F PC_TO_RDR_XFRBLOCK

1 Slot Number 1 h00 for contactless slot

2 Data Var. C-APDU to send to the card.
Only a maximum length of 262 bytes is
supported

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 49 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

7.3.5. PC_To_RDR_Escape

The PC_to_RDR_Escape command allows to send a Control command directly to the Coupler. This
is the equivalent of the SCardControl command in the PC/SC world.

The response to this command is the RDR_to_PC_Escape message (§ 8.3.3); the Data returned is
the response from the Coupler.

PC_To_RDR_Escape command format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h02 BULK_PC_TO_RDR

1 Message Type 1 h6B PC_TO_RDR_ESCAPE

2 Data Length 4 Size of the Data field of this message

6 Slot Number 1 h00 for contactless slot

7 Sequence 1 Sequence number assigned by the PC

8 RFU 3 h000000 Reserved for future use

11 Data Var. Data block sent to the RDR. Only a
maximum length of 262 bytes is
supported

PC_To_RDR_Escape command format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h6B PC_TO_RDR_ESCAPE

1 Slot Number 1 h00 for contactless slot

2 Data Var. Data block sent to the RDR. Only a
maximum length of 262 bytes is
supported

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 50 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8. COMMAND LAYER – BULK-IN ENDPOINT (RDR TO PC MESSAGES)

All Bulk-In responses described in this chapter are documented with more details in the CCID
Specifications [CCID].

8.1. LIST OF SUPPORTED/UNSUPPORTED BULK-IN MESSAGES

ID Response message See In answer to these commands Supported
h80 PC_To_RDR_DataBlock 8.3.1 PC_To_RDR_IccPowerOn

RDR_To_PC_XfrBlock
ü

h81 RDR_To_PC_SlotStatus 8.3.2 PC_To_RDR_IccPowerOff
PC_To_RDR_GetSlotStatus
PC_To_RDR_Abort

ü
ü
û

h82 RDR_To_PC_Parameters û

h83 RDR_To_PC_Escape 8.3.3 PC_To_RDR_Escape ü

h84 RDR_To_PC_DataRateAnd
ClockFrequency

û

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 51 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.2. BINDING TO THE TRANSPORT LAYERS

a. Binding to the Serial binary Transport

For a Serial communication using the binary protocol, the Bulk-In message is sent by the Coupler
to the PC in the following format:

START BYTE ENDPOINT CCID message CHECKSUM
hCD h81 10 + (0 to 262) bytes 1 byte

b. Binding to the Serial ASCII Transport

For a Serial communication using the ASCII protocol, the Bulk-In message is sent by the Coupler to
the PC in the following format:

START
MARK

Modified CCID message END
MARK

'^' 2 to 264 bytes
(4 to 528 hex chars)

“\r\n”

c. Binding to the TCP binary Transport

For a TCP communication, the Bulk-In message is sent by the Coupler to the PC in the following
format:

ENDPOINT CCID message
h81 10 + (0 to 262) bytes

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 52 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.3. RDR TO PC MESSAGES

8.3.1. RDR_To_PC_DataBlock

The RDR_To_PC_Datablock message comes as a response to:

 The PC_To_RDR_IccPowerOn command (§ 7.3.1); in this case, the Data field is the card's
ATR,

 The PC_To_RDR_XfrBlock command (§ 7.3.4); in this case, the Data field is the R-APDU
returned by the card – or by the Coupler's APDU interpreter.

RDR_To_PC_DataBlock response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h81 BULK_RDR_TO_PC

1 Message Type 1 h80 RDR_TO_PC_DATABLOCK

2 Data Length 4 Size of the Data field of this message

6 Slot 1 Same as last PC_TO_RDR message

7 Sequence 1

8 Slot Status 1 See § 8.4.1

9 Slot Error 1 See § 8.4.2

10 RFU 1 h00 Reserved for future use

11 Data Var. ATR or R-APDU.
Only a maximum length of 262 bytes is
supported

RDR_To_PC_DataBlock response format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h80 RDR_TO_PC_DATABLOCK

1 Slot Status 1 See § 8.4.1

2 Data Var. ATR or R-APDU.
Only a maximum length of 262 bytes is
supported

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 53 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.3.2. RDR_To_PC_SlotStatus

The RDR_To_PC_SlotStatus message comes as a response to:

 The PC_To_RDR_GetSlotStatus command (§ 7.3.3),

 The PC_To_RDR_IccPowerOff command (§ 7.3.2),

 The PC_To_RDR_IccPowerOn command (§ 7.3.1) if there's no card in the slot or the
Coupler has failed to power up the card,

 The PC_To_RDR_XfrBlock command (§ 7.3.4) if there's no card in the slot or the Coupler
has failed to communicate with the card.

RDR_To_PC_SlotStatus response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h81 BULK_RDR_TO_PC

1 Message Type 1 h81 RDR_TO_PC_SLOTSTATUS

2 Data Length 4 h00000000

6 Slot 1 Same as last PC_TO_RDR message

7 Sequence 1

8 Slot Status 1 See § 8.4.1

9 Slot Error 1 See § 8.4.2

10 ClockStatus 1 h00 Other values are not supported

RDR_To_PC_SlotStatus response format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h81 RDR_TO_PC_SLOTSTATUS

1 Slot Status 1 See § 8.4.1

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 54 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.3.3. RDR_To_PC_Escape

The RDR_To_PC_Escape message comes as a response to the PC_To_RDR_Escape command
(§ 7.3.5).

RDR_To_PC_Escape response format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h81 BULK_RDR_TO_PC

1 Message Type 1 h83 RDR_TO_PC_ESCAPE

2 Data Length 4 Size of the Data field of this message

6 Slot 1 Same as last PC_TO_RDR message

7 Sequence 1

8 Slot Status 1 See § 8.4.1

9 Slot Error 1 See § 8.4.2

10 RFU 1 h00 Reserved for future use

11 Data Var. Data block sent by the RDR. Only a
maximum length of 262 bytes is
supported

RDR_To_PC_Escape response format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h83 RDR_TO_PC_ESCAPE

1 Slot Status 1 See § 8.4.1

2 Data Var. Data block sent by the RDR. Only a
maximum length of 262 bytes is
supported

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 55 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.4. VALUES OF THE STATUS AND ERROR FIELDS

Each RDR_To_PC message contains a Slot Status and a Slot Error field.

8.4.1. Slot Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Command Status Reserved for future use Card Status

See below 0 0 0 0 See below

a. Card Status field

Bit 1 Bit 0 Description

Card Status
0 0 A Card is present and active (powered ON)
0 1 A Card is present and inactive (powered OFF or hardware error)
1 0 No card present (slot is empty)
1 1 Reserved for future use

b. Command Status field

Bit 7 Bit 6 Description

Command Status
0 0 Command processed without error
0 1 Command failed (error code is provided in the Slot Error field)
1 0 Time Extension is requested
1 1 Reserved for future use

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 56 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

8.4.2. Slot Error

This field is valid only if Command Status = b01 in the Slot Status field.

Error code Error name Possible cause
hFF CMD_ABORTED The PC has sent an ABORT command
hFE ICC_MUTE Time out in Card communication
hFD XFR_PARITY_ERROR Parity error in Card communication
hFC XFR_OVERRUN Overrun error in Card communication
hFB HW_ERROR Hardware error on Card side (over-current?)
hF8 BAD_ATR_TS Invalid ATR format
hF7 BAD_ATR_TCK Invalid ATR checksum
hF6 ICC_PROTOCOL_NOT_SUPPORTED Card's protocol is not supported
hF5 ICC_CLASS_NOT_SUPPORTED Card's power class is not supported
hF4 PROCEDURE_BYTE_CONFLICT Error in T=0 protocol
hF3 DEACTIVATED_PROTOCOL Specified protocol is not allowed
hF2 BUSY_WITH_AUTO_SEQUENCE RDR is currently busy activating a Card
hE0 CMD_SLOT_BUSY RDR is already running a command
h00 Command not supported

NB: this field is not available under the ASCII protocol.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 57 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

9. COMMAND LAYER – INTERRUPT ENPOINT (RDR TO PC NOTIFICATIONS)

9.1. LIST OF SUPPORTED/UNSUPPORTED INTERRUPT MESSAGES

ID Response message See Supported
h50 RDR_To_PC_NotifySlotChange 9.3.1 ü

h51 RDR_To_PC_HardwareError û

9.2. BINDING TO THE TRANSPORT LAYERS

a. Binding to the Serial binary Transport

In order to ease the implementation of the receiving logic, the CCID Interrupt frame is extended
to reach the same length as the bulk messages.

For a Serial communication using the binary protocol, the Interrupt-In message is sent by the
Coupler to the PC in the following format:

START BYTE ENDPOINT CCID message CHECKSUM
hCD h83 10 + (0 to 5) bytes 1 byte

b. Binding to the Serial ASCII Transport

For a Serial communication using the ASCII protocol, the Interrupt-In message is sent by the
Coupler to the PC in the following format:

START
MARK

Modified CCID message END
MARK

'^' 2 to 6 bytes
(4 to 12 hex chars)

“\r\n”

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 58 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

c. Binding to the TCP binary Transport

In order to ease the implementation of the receiving logic, the CCID Interrupt frame is extended
to reach the same length as the bulk messages.

For a TCP communication, the Interrupt-In message is sent by the Coupler to the PC in the
following format:

ENDPOINT CCID message
h83 10 + (0 to 262) bytes

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 59 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

9.3. DETAILS

9.3.1. RDR_To_PC_NotifySlotChange

The RDR_To_PC_NotifySlotChange message comes every-time a card is inserted or removed,
provided that the full-duplex operation mode is active.

Card insertion notifications are repeated with a period of about 1s until the PC issues the
PC_To_RDR_IccPowerOn command to the slot.

Card removal notifications are sent only one. There's no need for the PC to issue the
PC_To_RDR_IccPowerOff command after a removal.

RDR_To_PC_NotifySlotChange notification format – binary protocols

Offset Field Size Value Description / remark

0 ENDPOINT 1 h83 INTERRUPT_TO_PC

1 Message Type 1 h50

2 Data Length 4 Size of the SlotICCState array

6 RFU 4 h00 ... h00 Reserved for future use

10 TamperState 1 The state of all the reader’s tampers (if some)

11 SlotICCState Var. This field is reported on byte granularity.
The size is (2 bits * number of slots) rounded
up to the nearest byte.
Each slot has 2 bits. The least significant bit
reports the current state of the slot (0 = no ICC
present, 1 = ICC present). The most significant
bit reports whether the slot has changed state
since the last RDR_to_PC_NotifySlotChange
message was sent (0 = no change, 1 = change).
If no slot exists for a given location, the field
returns 00 in those 2 bits.
Example: A 1 slot CCID reports a single byte
with the following format:
Bit 0 = Slot 0 card present (1) / absent (0)
Bit 1 = Slot 0 status changed (1) / unchanged (0)
All other bits will be 0

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 60 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

RDR_To_PC_NotifySlotChange notification format – ASCII protocol

Offset Field Size Value Description / remark

0 Message Type 1 h50

1 SlotICCState Var. This field is reported on byte granularity.
The size is (2 bits * number of slots) rounded
up to the nearest byte.
Each slot has 2 bits. The least significant bit
reports the current state of the slot (0 = no ICC
present, 1 = ICC present). The most significant
bit reports whether the slot has changed state
since the last RDR_to_PC_NotifySlotChange
message was sent (0 = no change, 1 = change).
If no slot exists for a given location, the field
returns 00 in those 2 bits.
Example: A 1 slot CCID reports a single byte
with the following format:
Bit 0 = Slot 0 card present (1) / absent (0)
Bit 1 = Slot 0 status changed (1) / unchanged (0)
All other bits will be 0

NB: the tamper state is not available with the ASCII protocol.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 61 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

10. MAPPING PC/SC CALLS TO PC_TO_RDR / RDR_TO_PC MESSAGES

The PC/SC specification and Microsoft's reference implementation define a short set of functions
to work with PC/SC Couplers (and with Cards through a PC/SC Coupler).

This chapter explains how the very basic PC/SC functions shall be implemented.

10.1.1. SCardStatus

In PC/SC, the SCardStatus function has two roles:

 Check whether there's a Card in a Coupler or not,

 If a Card is present in the Coupler, return its ATR.

The first role is directly available from CCID, using the PC_To_RDR_GetSlotStatus message:

1. Send the PC_To_RDR_GetSlotStatus command (§ 7.3.3),

2. The Coupler returns a RDR_To_PC_SlotStatus response (§ 8.3.2),

3. Observe the Card Status field in the response (§ 8.4.1.a) to know whether a Card is present
and powered, present and not powered, or absent.

To retrieve the Card's ATR, the PC must activate the Card explicitely – this is done using the
PC_To_RDR_IccPowerOn message when a Card is present:

4. Send the PC_To_RDR_IccPowerOn command (§ 7.3.1),

5. The Coupler returns a RDR_To_PC_Datablock response (§ 8.3.1),

6. Observe the Status and Error fields in the response (§ 8.4.1). If both fields are zero,
communication with the Card is OK, and the Data field contains the Card's ATR (Answer To
Reset)3.

10.1.2. SCardConnect

In PC/SC, the SCardConnect function has two roles:

 Open a handle to communicate with the Card – the computer's PC/SC subsystem manages
concurrent or exclusive access, and take care to release the handle if the application stops
for any reason,

 Tells the Coupler which protocol shall be used to communicate with the Card (T=0 or T=1).

3 For a Contactless Card (PICC/VICC), the ATR is constructed according to PC/SC v2 chapter 3 rules.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 62 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

None of these two roles are significant for “low level” communication with a CCID Coupler4. The
actual “Card power up” role is provided by PC_To_RDR_IccPowerOn, which has already been
invoked by SCardStatus to retrieve the ATR.

10.1.3. SCardTransmit

In PC/SC, the SCardTransmit function is the very function that implements the exchange of APDUs
(Application Protocol Datagram Units) with a contact or contactless Smart Card.

1. Send your C-APDU (application-level Command) in the Data field of a
PC_To_RDR_XfrBlock command (§ 7.3.4),

2. The Coupler returns a RDR_To_PC_Datablock response (§ 8.3.1),

3. Observe the Status and Error fields in the response (§ 8.4.1). If both fields are zero,
communication with the Card is OK, and the Data field contains the Card's R-APDU
(application-level Response)

Note that for a wired logic contactless Card (PICC not compliant with ISO 14443-4 or VICC), the
SCardTransmit function doesn't actually communicate with the Card, but with the Coupler's
APDU Interpreter which is responsible for translating the “standard” APDU into a low-level,
proprietary command specific to the Card. This is the same here, the PC_To_RDR_XfrBlock
command goes through the Coupler's APDU Interpreter and not directly to a wired-logic
PICC/VICC.

10.1.4. SCardDisconnect

In PC/SC, the SCardDisconnect function has two roles:

 Close the handle that has been opened by SCardConnect,

 Tells the Coupler to power down the Card.

The first role is not relevant here.

The second role is taken by the PC_To_RDR_IccPowerOff message:

1. Send the PC_To_RDR_IccPowerOff command (§ 7.3.2),

2. The Coupler returns a RDR_To_PC_SlotStatus response (§ 8.3.2),

3. Observe the Card Status field in the response (§ 8.4.1.a) to know whether the Card has
already been removed, or is still present in the Coupler.

4 All SpringCard couplers feature automatic protocol activation, which mean that the protocol is always selected by the Coupler, not
by the application.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 63 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

10.1.5. SCardControl

In PC/SC, the SCardControl function is used to send “low level” commands to the Coupler, to the
Coupler's driver, or to the PC/SC subsystem.

In our case, only sending “low level” commands to the Coupler makes sense. This is done using the
PC_To_RDR_Escape message.

1. Send the low level command in the Data field of a PC_To_RDR_Escape command (§ 7.3.5),

2. The Coupler returns its answer in a RDR_To_PC_Escape response (§ 8.3.3).

Sending an escape sequence through PC_To_RDR_Escape is exactly the same as sending a
“legacy command” to a SpringCard coupler running in legacy (SpringProx) mode.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 64 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

11. CONFIGURATION REGISTERS FOR A SERIAL COUPLER

There are 3 ways to define the other configuration registers:

 Manually, using any terminal application to communicate with the Coupler's over its serial
line,

 Using SpringCard MultiConf application,

 Using the PC_To_RDR_Escape command, sending the configuration stream within the
command's data.

This chapter shows only the few register that are relevant for the CCID-over-serial
communication with the Coupler. Please refer to the Coupler's Developers' Guide for all details
regarding the configuration methods and the other registers.

11.1. OPERATING MODE

Name Address Description Size
MOD hC0 Coupler operating mode and options. See table below 2

Coupler operating mode and option bits

Bits Value Meaning
Byte 0 : operating mode
7-0 00000000

00000001
00000010

The PC selects the operating mode (Legacy or CCID)
Legacy mode enforced
CCID mode enforced
All other values are RFU and shall not be set

Byte 1 : operating options
7-4 RFU (set to 0000)

3-2 00
01
10
11

CCID auto-start
do not start CCID operation upon reset
start CCID operation using the binary protocol
RFU, do not use
start CCID operation using the ASCII protocol

1-0 00
01
10
11

CCID operating mode
half-duplex operation mode
full-duplex operation mode
RFU, do not use
full-duplex operation mode, LPCD

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 65 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

Default value: b00000000 b10000000

11.2. UART CONFIGURATION

Name Address Description Size
SER h67 UART configuration bits. See table below 1

UART configuration bits

Bits Value Meaning
7 0

1
Echo is ON during console communication
Echo is OFF during console communication

6-3 RFU (set to 0000)

2-0 101
111

Baudrate
38400bps
115200bps
All other values are RFU and shall not be set

Default value: b00000101

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 66 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

12. CONFIGURATION REGISTERS FOR A TCP COUPLER

The Network configuration (address, net-mask, gateway, info/location and password for Telnet
access) could be defined using SpringCard NDDU application (Network Devices Discovery Utility).

There are 3 ways to define all the other configuration registers:

 Manually, using a Telnet access to the Coupler,

 Using SpringCard MultiConf application once the Coupler is installed as a PC/SC Reader
under Windows,

 Using the PC_To_RDR_Escape command, sending the configuration stream within the
command's data.

This chapter shows only the few register that are relevant for the CCID-over-TCP communication
with the Coupler. Please refer to the Coupler's Developers' Guide for all details regarding the
configuration methods and the other registers.

12.1. SECURITY OPTIONS

Name Address Description Size
SEC h6E Security option bits. See table below 1

Security option bits

Bits Value Meaning
7 0

1
Telnet access is disabled
Telnet access is enabled

6-0 RFU (set to 0000000)
Default value: b10000000

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 67 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

12.2. NETWORK CONFIGURATION

12.2.1. IPv4 address, mask, and gateway

Name Address Description Size
IPA h80 IPv4 configuration bytes, see table below 4, 8 or 12

IPv4 configuration bytes

Bytes Contains Remark
0 Address, 1st byte Device's IPv4 Address.

If these bytes are missing, the default IP Address hC0 A8 00 FA
(192.168.0.250) is taken.

1 Address, 2nd byte
2 Address, 3rd byte
3 Address, 4th byte
4 Mask, 1st byte Network Mask.

If these bytes are missing, the default Mask hFF FF FF FF
(255.255.255.0) is taken.

5 Mask, 2nd byte
6 Mask, 3rd byte
7 Mask, 4th byte
8 Gateway, 1st byte Default Gateway.

If these bytes are missing, the value h00 00 00 00 (0.0.0.0) is
taken, meaning that there's no Gateway.

9 Gateway, 2nd byte
10 Gateway, 3rd byte
11 Gateway, 4th byte

Default value: hC0 A8 00 FA FF FF FF 00 00 00 00 00

(address = 192.168.0.250, mask = 255.255.255.0, no gateway)

12.2.2. TCP server port

Name Address Description Size
IPP h81 Listen TCP port for the server (2 bytes, MSB-first) 2

Default value: h0F 9F (server TCP port = 3999)

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 68 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

12.2.3. Ethernet configuration

Name Address Description Size
ETC h8D Ethernet configuration bits. See table below 1

Ethernet configuration bits

Bits Value Meaning
7-1 RFU (set to 0000000)
0 0

1
Use auto-configuration (10/100Mbps, half or full-duplex)
Force bitrate = 10Mbps, half-duplex

Default value: b00000000

12.2.4. Info / Location

Name Address Description Size
ILI h8E Info / Location string Var. 0-30

Default value: empty

The Info / Location string is a text value (ASCII) that appears

 When someone tries to connect on Telnet,

 In the NDDU software.

Use this string as a reminder of where your RDR is installed, or what is its role in your access-
control system.

12.2.5. Password for Telnet access

Name Address Description Size
ITP h8F Password for Telnet access string Var. 0-16

Default value: “springcard”

The Password for Telnet access string is a text value (ASCII) that protects the access to the RDR
using Telnet protocol.

The password is mandatory. If this registry is not set, default value “springcard” is used.

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15282-CB
page 69 of 69

SPRINGCARD PC/SC COUPLERS - Zero-driver - CCID low-level implementation

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a commercial offer, a license,
an advisory, fiduciary or professional relationship between SPRINGCARD and you. No information provided in this
document shall be considered a substitute for your independent investigation.

The information provided in document may be related to products or services that are not available in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the applicable law. While
SPRINGCARD will use reasonable efforts to provide reliable information, we don't warrant that this document is free
of inaccuracies, errors and/or omissions, or that its content is appropriate for your particular use or up to date.
SPRINGCARD reserves the right to change the information at any time without notice.

SPRINGCARD doesn't warrant any results derived from the use of the products described in this document.
SPRINGCARD will not be liable for any indirect, consequential or incidental damages, including but not limited to lost
profits or revenues, business interruption, loss of data arising out of or in connection with the use, inability to use or
reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these
product may result in personal injury. SPRINGCARD customers using or selling these products for use in such
applications do so on their own risk and agree to fully indemnify SPRINGCARD for any damages resulting from such
improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of SPRINGCARD and/or its
suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you constitute a license
and not a transfer of title : you may not remove this copyright notice nor the proprietary notices contained in this
documents, and you are not allowed to publish or reproduce this document, either on the web or by any mean,
without written permission of SPRINGCARD.

Copyright © SPRINGCARD SAS 2019, all rights reserved.

EDITOR’S INFORMATION

SPRINGCARD SAS company with a capital of 227 000 €

RCS EVRY B 429 665 482

Parc Gutenberg, 2 voie La Cardon

91120 Palaiseau – FRANCE

CONTACT INFORMATION

For more information and to locate our sales office or distributor in your country or area, please visit

www.springcard.com

SPRINGCARD, the SPRINGCARD logo are registered trademarks of SPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.springcard.com/

	1. Introduction
	1.1. Abstract
	1.2. Supported products
	1.3. Audience
	1.4. Support and updates
	1.5. Related documents
	1.5.1. CCID standard
	1.5.2. Developer's guides

	2. CCID over Serial – Binary implementation
	2.1. Introduction
	2.2. Physical layer
	2.3. Transport layer
	2.3.1. Block format
	2.3.2. Description of the fields
	2.3.3. Values for the ENDPOINT field
	2.3.4. Size of the blocks
	2.3.5. Timeout

	2.4. Command layer
	2.5. General communication flow
	2.5.1. Session establishment
	2.5.2. Operation mode: half-duplex or full-duplex?

	2.6. Error handling and recovery
	2.6.1. For the Coupler
	2.6.2. For the PC
	2.6.3. Quick recovery

	3. CCID over Serial – ASCII implementation
	3.1. Introduction
	3.2. Physical layer
	3.3. Transport layer
	3.3.1. Byte representation
	3.3.2. Block format
	a. Block format – CONTROL
	b. Block format – BULK
	c. Block format – INTERRUPT

	3.3.3. Start and End Marks
	3.3.4. Timeout

	3.4. Command layer
	3.5. General communication flow
	3.5.1. Session establishment
	3.5.2. Operation mode: half-duplex or full-duplex?

	3.6. Error handling and recovery
	3.6.1. For the Coupler
	3.6.2. For the PC

	4. CCID over TCP
	4.1. TCP link
	4.2. Transport layer
	4.2.1. Block format
	4.2.2. Description of the fields
	4.2.3. Values for the ENDPOINT field
	4.2.4. Size of the blocks

	4.3. Command layer
	4.4. General communication flow
	4.4.1. Session establishment
	4.4.2. Nominal dialogue

	4.5. Error handling and recovery
	4.5.1. For the Coupler
	4.5.2. For the PC
	4.5.3. Recovery

	5. CCID over BLE
	5.1. Introduction
	5.2. Advertisement and scan response
	5.2.1. Advertisement frame
	5.2.2. Scan response frame

	5.3. GATT profile
	5.3.1. Standard services
	5.3.2. CCID Status characteristic
	5.3.3. CCID BULK_TO_RDR characteristic
	5.3.4. BULK_TO_PC characteristic

	6. Command Layer – Control Endpoint
	6.1. List of Control message pairs
	6.2. Get Status command/response
	a. GET STATUS command format
	b. GET STATUS response format
	c. Value of the Status byte in GET STATUS response

	6.3. Get Descriptor command/response
	6.3.1. Command/response format
	a. GET DESCRIPTOR command format
	b. GET DESCRIPTOR response format

	6.3.2. List of available descriptors
	a. The Device descriptor
	b. The Configuration descriptor

	6.3.3. Response to a query for an unknown descriptor

	6.4. Set Configuration command/response
	a. SET CONFIGURATION command format
	b. SET CONFIGURATION response format

	6.5. Answers to unsupported messages

	7. Command Layer – Bulk-Out Endpoint (PC to RDR messages)
	7.1. List of supported/unsupported Bulk-Out messages
	7.2. Binding to the Transport Layers
	a. Binding to the Serial binary Transport
	b. Binding to the Serial ASCII Transport
	c. Binding to the TCP binary Transport

	7.3. PC to RDR messages
	7.3.1. PC_To_RDR_IccPowerOn
	7.3.2. PC_To_RDR_IccPowerOff
	7.3.3. PC_To_RDR_GetSlotStatus
	7.3.4. PC_To_RDR_XfrBlock
	7.3.5. PC_To_RDR_Escape

	8. Command Layer – Bulk-In Endpoint (RDR to PC messages)
	8.1. List of supported/unsupported Bulk-In messages
	8.2. Binding to the Transport Layers
	a. Binding to the Serial binary Transport
	b. Binding to the Serial ASCII Transport
	c. Binding to the TCP binary Transport

	8.3. RDR to PC messages
	8.3.1. RDR_To_PC_DataBlock
	8.3.2. RDR_To_PC_SlotStatus
	8.3.3. RDR_To_PC_Escape

	8.4. Values of the Status and Error fields
	8.4.1. Slot Status
	a. Card Status field
	b. Command Status field

	8.4.2. Slot Error

	9. Command Layer – Interrupt Enpoint (RDR to PC notifications)
	9.1. List of supported/unsupported Interrupt messages
	9.2. Binding to the Transport Layers
	a. Binding to the Serial binary Transport
	b. Binding to the Serial ASCII Transport
	c. Binding to the TCP binary Transport

	9.3. Details
	9.3.1. RDR_To_PC_NotifySlotChange

	10. Mapping PC/SC calls to PC_To_RDR / RDR_To_PC messages
	10.1.1. SCardStatus
	10.1.2. SCardConnect
	10.1.3. SCardTransmit
	10.1.4. SCardDisconnect
	10.1.5. SCardControl

	11. Configuration registers for a Serial Coupler
	11.1. Operating mode
	11.2. UART configuration

	12. Configuration registers for a TCP Coupler
	12.1. Security options
	12.2. Network configuration
	12.2.1. IPv4 address, mask, and gateway
	12.2.2. TCP server port
	12.2.3. Ethernet configuration
	12.2.4. Info / Location
	12.2.5. Password for Telnet access

