
Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SpringCard

Developers’ Toolkit Reference

This toolkit and documentation is provided on an as is basis. Pro-Active shall not
be held responsible for any mishaps caused by the use of this software. For more
information please visit www.springcard.com

http://www.springcard.com/

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Copyrights and disclaimers

The SpringCard developers’ toolkit is copyright (c) 2000 - 2002 Pro-Active

Redistribution and use in source (source code) and binary (object code) forms, with or
without modification, are permitted provided that the following conditions are met :
1. Redistributed source code must retain the above copyright notice, this list of conditions and
the disclaimer below,
2. Redistributed object code must reproduce the above copyright notice, this list of conditions
and the disclaimer below in the documentation and/or other materials provided with the
distribution,
3. The name of Pro-Active may not be used to endorse or promote products derived from this
software or in any other form without specific prior written permission from Pro-Active,
4. Redistribution of any modified code must be labeled "Code derived from original Pro-
Active copyrighted source code".

THIS SOFTWARE IS PROVIDED BY PRO-ACTIVE "AS IS" EITHER FREE OF CHARGE OR AS PART
OF A COMMERCIAL BUNDLE. PRO-ACTIVE SHALL NOT BE LIABLE FOR INFRINGEMENTS OF
THIRD PARTIES RIGHTS BASED ON THIS SOFTWARE. ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. PRO-ACTIVE DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THIS SOFTWARE WILL MEET THE USER'S
REQUIREMENTS OR THAT THE OPERATION OF IT WILL BE UNINTERRUPTED OR ERROR-FREE.
IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW, SHALL PRO-ACTIVE BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ALSO, PRO-ACTIVE IS
UNDER NO OBLIGATION TO MAINTAIN, CORRECT, UPDATE, CHANGE, MODIFY, OR OTHERWISE
SUPPORT THIS SOFTWARE.

The SpringCard developers’ toolkit and the SpringCard APIs include software and
documentation developed by or wrote by David Corcoran in the MUSCLE project.

corcoran@linuxnet.com
www.linuxnet.com

Please read the file "credit-muscle.txt" for copyright and disclaimer.

The SpringCard developers’ toolkit and the SpringCard APIs include software and
documentation developed by or wrote by GemPlus.

http://www.gemplus.com/techno/tlp_drivers/
Please read the file "credit-gemplus.txt" for copyright and disclaimer.

mailto:corcoran@linuxnet.com
http://www.linuxnet.com/
http://www.gemplus.com/techno/tlp_drivers/

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Trademarks

SpringCard and SpringCard-CF are registered trademarks of Pro-Active, France.
Visor, SpringBoard and HandSpring are registered trademarks of HandSpring, USA.
Microsoft, Windows, PocketPC are registered trademarks of Microsoft, USA.
GemPlus and GemCore are registered trademarks of GemPlus, France.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SpringCard’ technical data

Common

Dual slot smartcard reader :
• Slot A is full size ISO slot;
• Slot B is an internal SIM/SAM slot.
• GemPlus GemCore chipset.
• Supported cards : ISO7816-1,2,3,4 (T=0, T=1) in 3V.

SpringCard-CF

• For use in the PocketPC handled family through the Compact-Flash expansion slot1.
• API implementation as a Windows CE DLL for PocketPC 2000 or 2002.
• Plug and play detection as a serial port under Windows CE for PocketPC 2000 or

2002.
• Powered by the PocketPC.

SpringCard-VS

• For use in the HandSpring Visor PDA family through the SpringBoard expansion slot.
• API implementation as a PalmOS static library.
• Embedded 2Mb flash memory.
• Powered by the Visor.

1 Suitable for use with most of the PocketPC handleds featuring a Compact-Flash slot. Check mechanical data
before buying.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

The SpringCard API

The PC/SC API

This document contains the reference API calls for communicating to the SpringCard readers
in “PC/SC like” mode.

PC/SC is a standard proposed by the PC/SC workgroup which is a conglomerate of
representative from major smartcard manufacturers and other companies. This specification
tries to abstract the smartcard layer into a high level API so that smartcards and their readers
can be accessed in a homogeneous fashion.

Two well known PC/SC implementation are the WinsCard API provided by Microsoft under
Windows ®, and the “PC/SC lite” provided by the MUSCLE project under Linux.

The SpringCard routines are compatible with the Microsoft ® API calls and with the
MUSCLE project “PC/SC lite” API calls. It gives also a common API for communication
with the SpringCard readers under PalmOS or Windows CE as if they were regular PC/SC
readers under Windows 95/98/ME/2000/XP.

Differences between the SpringCard API and the PC/SC standard

As the SpringCard family is targeted for light embedded systems, the goal is not to provide a
complete PC/SC implementation, but to give developers the ability to access smart cards the
same way under many OS.

• PC/SC is designed as a three layers model :
- The bottom layer (IFD Handlers) is provided by the reader manufacturer;
- The middle layer (ICC Resource Manager) –or PC/SC middleware– is

provided by the OS itself;
- The top layer (Service Provider) is developed in parallel with the embedded

card application. The applications can access a card through this Service
Provider or directly through the PC/SC middleware (ICC Aware Application).

The SpringCard API includes both bottom and middle layers in a monolithic library
and doesn’t provide support for the Service Provider layer.
ICC Aware Application can be directly bound to the SpringCard through standards
PC/SC calls, otherwise the Service Provider must be replaced by external helper
libraries.

• PC/SC is designed for very large systems (supports of many readers from multiple

manufactures in the same system, logical or geographical groups of readers…).

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Through the SpringCard API, the application can access only two readers: the
SpringCard main slot and the SpringCard SIM/SAM slot if available.

• PC/SC is designed for multi users, multi tasking systems. Both PalmOS and PocketPC

are single user systems, and multi tasking is very limited. The SpringCard API also
gives only a exclusive access to the smart cards and doesn’t provide the transaction
mechanism.

• SpringCard must remain an easy way to access smart cards from a handled or a PDA.

The SpringCard API provides many helper functions, primarily dedicated to ease the
use of binary buffers under Embedded Visual Basic, but also very useful under other
development tools.

Working with the SpringCard API

Under PalmOS (Visor), the SpringCard API is contained in the static library “springcard.lib”.
Use the supplied C/C++ header file “springcard.h” for type definition and function prototypes.

You can debug your PalmOS SpringCard application with POSE (the PalmOS emulator)
through the SpringCard Starter Kit which can be bought at Pro-Active.

Under Windows CE (PocketPC), the SpringCard API is contained in the library
springcard.dll2.

• In an Embedded Visual C++ project, use the supplied C/C++ header file
“springcard.h” and the related wrapper “springcard.lib”;

• In an Embedded Visual Basic, use the supplied VB modules “springcard_api.bas” and
“springcard_err.h”.

You can’t emulate the SpringCard reader in the PocketPC environment, but you can either

• Design a VB or Visual C++ application featuring smart cards access through the
Windows PC/SC API (winscard.h), then port it to eVB or eVC and move references
from “winscard.dll” to “springcard.dll”;

• Debug your application inside your target PocketPC handled through Microsoft
provided tools.

Type definitions

The following is a list of commonly used type definitions.

BYTE unsigned char
USHORT unsigned short
ULONG unsigned long
BOOL short
DWORD unsigned long
WORD unsigned long
LONG long
RESPONSECODE long
LPCSTR const char *
SCARDCONTEXT unsigned long

2 Under Windows CE the API is compiled using UNICODE for every strings. Be sure to deploy the
springcard.dll suitable for your target (i.e., PocketPC version and processor family).

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

PSCARDCONTEXT unsigned long *
LPSCARDCONTEXT unsigned long *
SCARDHANDLE unsigned long
PSCARDHANDLE unsigned long *
LPSCARDHANDLE unsigned long *
LPCVOID const void *
LPVOID void *
LPCBYTE const unsigned char *
LPBYTE unsigned char *
LPDWORD unsigned long *
LPSTR char *
LPCWSTR char *

Error codes

The following is a list of commonly used errors.

SCARD_E_UNSUPPORTED_INTERFA
CE
SCARD_E_UNSUPPORTED_FEATURE
SCARD_E_NOTIMPL
SCARD_E_UNSUPPORTED_FUNCTIO
N
SCARD_E_INSUFFICIENT_BUFFER
SCARD_E_INVALID_ATR
SCARD_E_INVALID_HANDLE
SCARD_E_INVALID_PARAMETER
SCARD_E_INVALID_TARGET
SCARD_E_INVALID_VALUE
SCARD_F_COMM_ERROR
SCARD_F_INTERNAL_ERROR
SCARD_E_UNKNOWN_READER
SCARD_E_TIMEOUT
SCARD_E_SHARING_VIOLATION
SCARD_E_NO_SMARTCARD
SCARD_E_UNKNOWN_CARD
SCARD_E_NOT_READY
SCARD_E_SYSTEM_CANCELLED

SCARD_E_NOT_TRANSACTED
SCARD_E_READER_UNAVAILABLE
SCARD_F_UNKNOWN_ERROR
SCARD_W_UNSUPPORTED_CARD
SCARD_W_UNRESPONSIVE_CARD
SCARD_W_UNPOWERED_CARD
SCARD_W_RESET_CARD
SCARD_W_REMOVED_CARD
SCARD_W_INSERTED_CARD
SCARD_E_UNKNOWN_READER
SCARD_E_TIMEOUT
SCARD_E_NO_SMARTCARD
SCARD_E_UNKNOWN_CARD
SCARD_E_PROTO_MISMATCH
SCARD_E_SYSTEM_CANCELLED
SCARD_E_PCI_TOO_SMALL
SCARD_E_READER_UNSUPPORTED
SCARD_E_DUPLICATE_READER
SCARD_E_CARD_UNSUPPORTED
SCARD_E_NO_SERVICE
SCARD_E_SERVICE_STOPPED

For a human readable representation of an error code, call the API function
SCardErrorToString.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SpringCard functions – PC/SC compliant

SCardEstablishContext

SCardReleaseContext

SCardListReaders

SCardConnect

SCardDisconnect

SCardControl

SCardStatus

SCardTransmit

SCardFreeMemory

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardEstablishContext

Synopsis:
LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

Parameters:
dwScope Not used. Set to SCARD_SCOPE_SYSTEM for compatibility.
pvReserved1 Not used. Set to NULL.
pvReserved2 Not used. Set to NULL.
phContext Returned reference to this connection.

Description:
This function creates a communication context to the SpringCard readers. This must be the first
function called in a SpringCard application.

Returns:
SCARD_S_SUCCESS Successful.
SCARD_E_INVALID_VALUE Invalid scope type passed.
SCARD_E_READER_UNAVAILABLE Could not find the SpringCard readers.

Example:
SCARDCONTEXT hContext;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardReleaseContext

Synopsis:
LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

Parameters:
hContext Connection context to be closed.

Description:
This function destroys a communication context to the SpringCard readers. This must be the last
function called in a SpringCard application.

Returns:
SCARD_S_SUCCESS Successful.
SCARD_E_INVALID_HANDLE Invalid hContext handle.

Example:
SCARDCONTEXT hContext;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardReleaseContext(hContext);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardListReaders

Synopsis:
LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCSTR mszGroups,
 INOUT LPSTR mszReaders,
 INOUT LPDWORD pcchReaders);

Parameters:
hContext Connection context to the SpringCard readers.
mszGroups Not used, set to NULL.
mszReaders Multi-string with list of readers.
pcchReaders Size of multi-string buffer including NULLs.

Description:
This function returns a list of currently available readers.

mszReaders is a pointer to a character string which will be allocated by the application. If the
application sends mszReaders as NULL then this function will return the size of the buffer needed to
allocate in pcchReaders.

Remark:
The reader names will be a multi-string and separated by a NULL character and ended by a double
NULL, for example,

SpringCard GCR-1.20-0M7 slot A\0 SpringCard GCR-1.20-0M7 B\0\0

The “GCR-xxx” pattern is the firmware release of the embedded GemCore chipset.
The first reader name returned is always the SpringCard main slot, the second is the SpringCard
internal SIM/SAM slot.

Returns:
SCARD_S_SUCCESS Successful.
SCARD_E_INVALID_HANDLE Invalid hContext handle.
SCARD_E_INSUFFICIENT_BUFFER Reader buffer not large enough.
SCARD_E_READER_UNAVAILABLE The reader has been removed.

Example:
SCARDCONTEXT hContext;
LPSTR mszReaders;
DWORD dwReaders;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardListReaders(hContext,
 NULL,
 NULL,
 &dwReaders);
mszReaders = (LPSTR)malloc(sizeof(char)*dwReaders);
rc = SCardListReaders(hContext,
 NULL,
 &mszReaders,
 &dwReaders);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardConnect

Synopsis:
LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

Parameters:
hContext Connection context to the PC/SC Resource Manager.
szReader Reader name to connect to. Use SCardListReaders to retrieve the

available reader names. You can also use shortcut “A” for the
SpringCard main-slot, and shortcut “B” for the internal SIM/SAM slot.

dwShareMode Not used. Set to SCARD_SHARE_EXCLUSIVE.
dwPreferredProtocols Desired protocol use.
phCard Handle to this connection.
pdwActiveProtocol Established protocol to this connection.

Description:
This function establishes a connection to the friendly name of the reader specified in szReader. The
first connection will power up and perform a reset on the card.

Values of dwPreferredProtocols:
SCARD_PROTOCOL_T0 Select the T=0 protocol.
SCARD_PROTOCOL_T1 Select the T=1 protocol.
SCARD_PROTOCOL_Tx Select the T=0 or T=1 protocol.

Those values of dwPreferredProtocols may be combined (OR) with the following flags:
SCARD_PROTOCOL_HIS Force T=0 or T=1 at double clock speed.
SCARD_PROTOCOL_PTS Force the card baudrate to 9600 bauds (otherwise, the

SpringCard reader will ask the card to run at the highest
available baudrate).

SCARD_PROTOCOL_EMV Force EMV compliant T=0 or T=1 protocol.

The specific value “SCARD_PROTOCOL_RAW” allows to work with synchronous cards. This is not a
PC/SC standard. See chapter to “synchronous smartcards” for further information.

Remark:
This function powers-up the SpringCard and the card. Call SCardDisconnect as soon as possible to
reduce power consumption.

Returns:
SCARD_S_SUCCESS Successful
SCARD_E_INVALID_VALUE Invalid sharing mode, protocol, or reader name.
SCARD_E_READER_UNAVAILABLE The reader has been removed.
SCARD_E_UNSUPPORTED_FEATURE Protocol not supported.
SCARD_E_SHARING_VIOLATION Someone else has exclusive rights.
SCARD_E_INVALID_HANDLE Invalid hContext handle.

The if not NULL, the dwActiveProcol variable receives the value of the selected protocol:
SCARD_PROTOCOL_T0 T=0 protocol has been selected.
SCARD_PROTOCOL_T1 T=1 protocol has been selected.
SCARD_PROTOCOL_RAW No protocol selected, reserved for synchronous cards.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Example:
SCARDCONTEXT hContext;
SCARDHANDLE hCard
DWORD dwActiveProtocol;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_T0,
 &hCard,
 &dwActiveProtocol);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardDisconnect

Synopsis:
LONG SCardDisconnect(IN SCARDHANDLE hCard, IN DWORD dwDisposition);

Parameters:
hCard Connection made from SCardConnect.
dwDisposition Action to perform with the card and the reader.

Description:
This function terminates a connection to the connection made through SCardConnect.

Depending on the value of dwDisposition, the SpringCard API does the following:
SCARD_LEAVE_CARD The handle to the card is closed, but the card remains physically in

the same state as before.
SCARD_RESET_CARD The card is reset, but remains powered.
SCARD_UNPOWER_CARD The card is powered-down. The reader remains powered.
SCARD_EJECT_CARD The card is powered-down. If both slots are in power-down state, the

reader is also powered-down. It will automatically be powered-up
again on the next call to SCardConnect.

Returns:
SCARD_S_SUCCESS Successful.
SCARD_E_INVALID_HANDLE Invalid hCard handle.
SCARD_E_READER_UNAVAILABLE The reader has been removed.

Example:
SCARDCONTEXT hContext;
SCARDHANDLE hCard
DWORD dwActiveProtocol;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_Tx,
 &hCard,
 &dwActiveProtocol);
rc = SCardDisconnect(hCard,
 SCARD_UNPOWER_CARD);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardTransmit

Synopsis:
LONG SCardTransmit(IN SCARDHANDLE hCard,
 INOUT LPCSCARD_IO_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 INOUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 INOUT LPDWORD pcbRecvLength);

Parameters:
hCard Connection made from SCardConnect.
pioSendPci Structure of protocol information.
pbSendBuffer APDU to send to the card.
cbSendLength Length of the APDU.
pioRecvPci Structure of protocol information.
pbRecvBuffer Response from the card.
pcbRecvLength Length of the response.

Description:
This function sends an APDU to the smartcard contained in the reader connected to by
SCardConnect. The card responds from the APDU and stores this response in pbRecvBuffer and its
length in pcbRecvLength.

SendPci and RecvPci are structures containing the following:

typedef struct {
 DWORD dwProtocol; /* SCARD_PROTOCOL_T0 or SCARD_PROTOCOL_T1 */
 DWORD cbPciLength; /* Length of this structure – not used */
} SCARD_IO_REQUEST;

Values of pioSendPci:
SCARD_PCI_T0 Pre defined T=0 PCI structure
SCARD_PCI_T1 Pre defined T=1 PCI structure

Remark:
As the card protocol is known through hCard handle, pioSendPci and RecvPci can also be set to
NULL.

Returns:
SCARD_S_SUCCESS Successful
SCARD_E_NOT_TRANSACTED APDU exchange not successful.
SCARD_E_INVALID_HANDLE Invalid hCard handle.
SCARD_E_PROTO_MISMATCH Connect protocol is different than desired.
SCARD_E_INVALID_VALUE Invalid Protocol, reader name, etc.
SCARD_E_READER_UNAVAILABLE The reader has been removed.
SCARD_W_REMOVED_CARD The card has been removed from the reader.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Example:
LONG rc;
SCARDCONTEXT hContext; SCARDHANDLE hCard;
DWORD dwActiveProtocol, dwRecvLength;
SCARD_IO_REQUEST pioRecvPci;
BYTE pbRecvBuffer[10];
BYTE pbSendBuffer = { 0xC0, 0xA4, 0x00, 0x00, 0x02, 0x3F, 0x00 };
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_T0,
 &hCard,
 &dwActiveProtocol);
dwRecvLength = sizeof(pbRecvBuffer);
rc = SCardTransmit(hCard,
 SCARD_PCI_T0,
 pbSendBuffer,
 sizeof(pbSendBuffer),
 &pioRecvPci,
 pbRecvBuffer,
 &dwRecvLength);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardControl

Synopsis:
LONG SCardControl(IN SCARDHANDLE hCard,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 OUT LPBYTE pbRecvBuffer,
 INOUT LPDWORD pcbRecvLength);

Parameters:
hCard Connection made from SCardConnect.
pbSendBuffer Command to send to the reader.
cbSendLength Length of the command.
pbRecvBuffer Response from the reader
pcbRecvLength Length of the response.

Description:
This function sends a command directly to the GemCore chipset into reader. This allows you to:

• Run an interpreted synchronous driver, for memory cards handling (see chapter to
“synchronous smartcards” for further information);

• Access (read/write) GemCore internal configuration registers;
• Power-up your card with manual PTS negociation;
• …

For more details regarding the GemCore chipset command set, please refer to GemPlus
documentation.

Returns:
SCARD_S_SUCCESS Successful
SCARD_E_NOT_TRANSACTED Data exchange not successful.
SCARD_E_INVALID_HANDLE Invalid hCard handle.
SCARD_E_INVALID_VALUE Invalid value was presented.
SCARD_E_READER_UNAVAILABLE The reader has been removed.
SCARD_W_REMOVED_CARD The card has been removed from the reader.

Example:
LONG rc;
SCARDCONTEXT hContext; SCARDHANDLE hCard;
DWORD dwActiveProtocol, dwRecvLength;
BYTE pbRecvBuffer[10];
BYTE pbSendBuffer = { 0x06, 0x00, 0x0A, 0x01, 0x01, 0x10 0x00 };
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);
rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_RAW,
 &hCard,
 &dwActiveProtocol);
dwRecvLength = sizeof(pbRecvBuffer);
rc = SCardControl(hCard,
 pbSendBuffer,
 sizeof(pbSendBuffer),
 pbRecvBuffer,
 &dwRecvLength);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardStatus

Synopsis:
LONG SCardStatus(IN SCARDHANDLE hCard,
 INOUT LPSTR szReaderName,
 INOUT LPDWORD pcchReaderLen,
 OUT LPDWORD pdwState,
 OUT LPDWORD pdwProtocol,
 OUT LPBYTE pbAtr,
 OUT LPDWORD pcbAtrLen);

Parameters:
hCard Connection made from SCardConnect
szReaderName Friendly name of this reader.
pcchReaderLen Size of the szReaderName multi-string
pdwState Current state of this reader
pdwProtocol Current protocol of this reader
pbAtr Current ATR of a card in this reader
pcbAtrLen Length of ATR

Description:
This function returns the current status of the reader connected to by hCard. Its friendly name will be
stored in szReaderName. pcchReaderLen will be the size of the allocated buffer for szReaderName. If
this is too small the function will return with the necessary size in pcchReaderLen. The current state,
and protocol will be stored in pdwState and pdwProtocol respectively. pdwState is a DWORD possibly
OR ‚d with the following values:

Values of pdwState:
SCARD_ABSENT There is no card in the reader.
SCARD_SWALLOWED There is a card in the reader in position for use. The card is not

powered.
SCARD_POWERED Power is being provided to the card, but the reader driver is unaware

of the mode of the card.
SCARD_NEGOTIABLEMODE The card has been reset and is awaiting PTS negotiation.
SCARD_SPECIFICMODE The card has been reset and specific communication protocols have

been established.

Value of pdwProtocols Meaning
SCARD_PROTOCOL_T0 T=0 protocol has been selected.
SCARD_PROTOCOL_T1 T=1 protocol has been selected.
SCARD_PROTOCOL_RAW No protocol selected, reserved for synchronous cards.

Returns:
SCARD_S_SUCCESS Successful
SCARD_E_INVALID_HANDLE Invalid hCard handle
SCARD_E_INSUFFICIENT_BUFFER Not enough allocated memory for szReaderName
SCARD_E_READER_UNAVAILABLE The reader has been removed.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Example:
SCARDCONTEXT hContext;
SCARDHANDLE hCard;
DWORD dwActiveProtocol, cReaders;
DWORD dwState, dwProtocol, dwAtrLen;
BYTE pbAtr[MAX_ATR_SIZE]
LPSTR mszReaders;
LONG rc;
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);
rc = SCardConnect(hContext, iCReader XlR, SCARD_SHARE_SHARED,
 SCARD_PROTOCOL_T0, &hCard, &dwActiveProtocol);
mszReaders = (LPSTR)malloc(sizeof(char)*50);
rc=SCardStatus(hCard, mszReaders, 50, &dwState, &dwProtocol, pbAtr,
 &dwAtrLen);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SpringCard functions – not PC/SC

SCardAllocMemory

SCardStringToBin

SCardHexToString

SCardBinToString

SCardErrorToString

SCardISOErrorToString

SCardMultiStringItem

SCardMultiStringCount

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardAllocMemory

Synopsis:
SCardAllocMemory(IN SCARDCONTEXT hContext,
 INOUT LPVOID pvMem,
 IN DWORD dwSize);

Parameters:
hContext Connection context.
pvMem Pointer on the buffer.
dwSize Size of the buffer to allocate.

Description:
This function allocates a buffer whose size is worth dwSize, and return the beginning of this buffer in
pvMem.

Returns:
SCARD_S_SUCCESS Succesful
SCARD_E_NO_MEMORY Failure

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardStringToBin

Synopsis:
LONG SCardStringToBin(IN SCARDCONTEXT hContext,
 INOUT LPVOID pvResult,
 IN DWORD dwResultLen,
 IN LPCTSTR szText);

Parameters:
hContext Connection context.
pvResult Pointer to memory area that receive the result of the translation
dwResultLen Length of the memory area pointed to be pvResult
szText Pointer to string

Description:
This function translate an HEX encoded string into binary. The size of the string to translate must be
smaller than dwResultLen.

Returns:
SCARD_S_SUCCESS Successful.
SCARD_E_INSUFFICIENT_BUFFER The size of the buffer is insufficient.
SCARD_E_INVALID_PARAMETER pvResult or/and szText is/are NULL.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardHexToByte

Synopsis:
LONG SCardHexToByte(IN SCARDCONTEXT hContext,
 INOUT LPBYTE pbResult,
 IN LPCTSTR szText);

Parameters:
hContext Connection context.
pbResult Pointer to a byte that receive the result of the translation.
szText String to convert.

Description:
This function translate an HEX encoded string into one byte.

Returns:
SCARD_S_SUCCESS Succesful
SCARD_E_INVALID_PARAMETER pbResult or/and szText is/are NULL.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardHexToString

Synopsis:
LONG SCardHexToString(IN SCARDCONTEXT hContext,
 INOUT LPTSTR szResult,
 IN DWORD dwResultLen,
 IN LPCTSTR szText);

Parameters:
hContext Connection context.
szResult Pointer to string that receive the result of the translation.
dwResultLen Length of the memory area pointed to be pvResult.
szText String to convert.

Description:
This function translate an HEX encoded string into an ASCII string.

Returns:
SCARD_S_SUCCESS Succesful
SCARD_E_INSUFFICIENT_BUFFER The size of the buffer is insufficient.
SCARD_E_INVALID_PARAMETER pvResult or/and szText is/are NULL.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardBinToString

Synopsis:
LONG SCardBinToString(IN SCARDCONTEXT hContext,
 INOUT LPTSTR szResult,
 IN DWORD dwResultLen,
 INOUT LPVOID pvMem,
 IN DWORD dwSize);

Parameters:
hContext Connection context.
szResult Pointer to string that receive the result of the translation
dwResultLen Length to the string pointed by szResult
pvMem Pointer to the memory area to be translated
dwSize Length of the memory area to be translated

Description:
This function translate a buffer into a HEX encoded string.

Returns:
SCARD_S_SUCCESS Succesful
SCARD_E_INSUFFICIENT_BUFFER The size of the buffer is insufficient.
SCARD_E_INVALID_PARAMETER pvResult or/and szText is/are NULL.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardErrorToString

Synopsis:
LPTSTR SCardErrorToString(IN SCARDCONTEXT hContext,
 DWORD dwErrCode);

Parameters:
hContext Connection context.
dwErrCode Error code to translate

Description:
This function translate a PC/SC error code to a human readable explanation string.

Returns:
Pointer to a string.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardISOErrorToString

Synopsis:
LPTSTR SCardISOErrorToString(IN SCARDCONTEXT hContext,
 BYTE sw1,
 BYTE sw2);

Parameters:
hContext Connection context.
sw1 ISO return code SW1
sw2 ISO return code SW2

Description:
This function translate an ISO SW pair to a human readable explanation string.

Returns:
Pointer to a string.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardMultiStringCount

Synopsis:
DWORD SCardMultiStringCount(IN SCARDCONTEXT hContext,
 IN LPCTSTR szMulti);

Parameters:
hContext Connection context.
szMulti A multi-string character string (double ‘\0’ ended).

Description:
This function counts the strings in a multi-string buffer (for example, in the buffer returned by
SCardListReaders).

Returns:
The number of strings found.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

SCardMultiStringItem

Synopsis:
LPCTSTR SCardMultiStringCount(IN SCARDCONTEXT hContext,
 IN LPCTSTR szMulti,
 IN DWORD dwItem);

Parameters:
hContext Connection context.
szMulti A multi-string character string (double ‘\0’ ended).
dwItem The index of the string to be returned.

Description:
This function select and returns one string in a multi-string buffer (for example, in the buffer returned
by SCardListReaders).

Returns:
A pointer to the selected string, NULL if error.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

PC/SC functions not available under the SpringCard API

SCardListReaderGroups

SCardListCards

SCardListInterfaces

SCardGetProviderId

SCardGetCardTypeProviderName

SCardIntroduceReaderGroup

SCardForgetReaderGroup

SCardIntroduceReader

SCardForgetReader

SCardAddReaderToGroup

SCardRemoveReaderFromGroup

SCardIntroduceCardType

SCardSetCardTypeProviderName

SCardForgetCardType

SCardLocateCards

SCardGetStatusChange

SCardCancel

SCardReconnect

SCardBeginTransaction

SCardCancelTransaction

SCardControl

SCardGetReaderCapabilities / SCardGetAttrib

SCardSetReaderCapabilities / SCardSetAttrib

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Using the SpringCard-VS with synchronous cards

Thanks to the GemCore chipset, the SpringCard-VS can access synchronous memory card as
easily as they where T=0 or T=1 cards.

Please refer to GemPlus documentation “GemCore Chipset Controller Software version 2.0”,
chapter “Using the GemCore chipset controller with memory cards” for more information.

Example
This sample shows how to read 64 bytes, starting at offset 32, from an S=9 memory card with the
SpringCard-VS.

LONG rc;
SCARDCONTEXT hContext; SCARDHANDLE hCard;
DWORD dwActiveProtocol, dwRecvLength;
BYTE pbRecvBuffer[64+2]; // length = 64 + sw1,sw2
BYTE pbSendBuffer = { 0xB0,
 0x00,
 0x00,
 32, // offset = 32
 64 // length = 64
 };
rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);
rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_RAW | 0x08, // S=9 is referred as GPM8K,
 // this is internal function
 // DEFINE_CARD_TYPE(0x08)
 &hCard,
 &dwActiveProtocol);
dwRecvLength = sizeof(pbRecvBuffer);
rc = SCardTransmit(hCard,
 NULL,
 pbSendBuffer,
 sizeof(pbSendBuffer),
 NULL,
 pbRecvBuffer,
 &dwRecvLength);

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Using the SpringCard-CF with synchronous cards

Due to the lack of synchronous driver in the GemCore Lite chipset, the SpringCard-CF
requires more work to access those memory cards.

Please refer to GemPlus documentation “GemCore Chipset Controller Software version 2.0”,
chapter “Interpreted synchronous smartcard driver” for more information.

Example
This sample shows how to read 64 bytes, starting at offset 32, from an S=10 memory card with the
SpringCard-CF.

/* S=10 Power-Up command in 8051 code */
static BYTE S10_POWER_UP_CMD[] =
{
 0x16,
 0x00, 0x12, 0x00, 0x00, 0x00, 0x00,
 0x02, 0x11, 0x12
};

/* S=10 Read command in 8051 code */
static BYTE S10_READ_CMD[] =
{
 0x16, /* Synchronous interpreter command */
 0x00, /* don’t care */
 0xB0, /* don’t care */
 0xCC, /* Will receive offset H */
 0xCC, /* Will receive offset L */
 0x00, /* don’t care */
 0xCC, /* Will receive length */
 0x3E, 0x21, 0xBE, 0x00, 0x14, 0x51, 0x71, 0x41, 0x74, 0x30,
 0x93, 0xEF, 0x93, 0x74, 0xFF, 0x93, 0x41, 0x71, 0x82, 0xF6,
 0x08, 0xDB, 0xFB, 0xA2, 0x42, 0xBE, 0x80, 0x02, 0x80, 0x03,
 0xBE, 0xC0, 0x1B, 0x51, 0x71, 0x41, 0xBE, 0xC0, 0x04, 0x74,
 0x31, 0x80, 0x02, 0x74, 0x34, 0x93, 0x74, 0xFF, 0x93, 0x93,
 0x41, 0x71, 0x7B, 0x04, 0x82, 0xF6, 0x08, 0xDB, 0xFB, 0x42,
 0x62, 0x6D, 0x00
};
LONG rc;
SCARDCONTEXT hContext; SCARDHANDLE hCard;
DWORD dwActiveProtocol, dwRecvLength;
SCARD_IO_REQUEST pioRecvPci;
BYTE pbRecvBuffer[64+2]; // length = 64 + sw1,sw2

rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM,
 NULL,
 NULL,
 &hContext);

.../...

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

rc = SCardConnect(hContext,
 "A",
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_RAW, // The GemCore Lite doesn’t care
 // of the card type here.
 &hCard,
 &dwActiveProtocol);

/*
 At this point, the reader has checked that there is a card in the slot;
 it has turn the slot mode to ISO + synchronous interpreted driver.
 We must at first power-up the card !
*/

dwRecvLength = sizeof(pbRecvBuffer);
rc = ScardControl(hCard,
 S10_POWER_UP_CMD,
 sizeof(S10_POWER_UP_CMD),
 pbRecvBuffer,
 &dwRecvLength);

/*
 We can’t expect any return code, so we don’t care for the result !
 Now, let’s build the read command.
*/

S10_READ_CMD[3] = 0; // offset H = 0
S10_READ_CMD[4] = 32; // offset L = 32
S10_READ_CMD[6] = 64; // length = 64

dwRecvLength = sizeof(pbRecvBuffer);
rc = ScardControl(hCard,
 S10_READ_CMD,
 sizeof(S10_READ_CMD),
 pbRecvBuffer,
 &dwRecvLength);

/*
 We can check sw1, sw2, to make sure we have supplied a "valid" 8051
 code, but there is no way to know for sure if the returned data are
 valid or not (if the card is not an S=10, or hasn’t been powered
 before, we should receive 0xFF, 0xFF, 0xFF, ...)
*/

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

Direct access to the SpringCard

For developers who don’t want to use the PC/SC API, it is still possible to use the SpringCard
as a regular GemCore based serial reader. GemPlus TLP driver or over specific software can
use the serial port to access both slots A et B.

Under PalmOS (Visor)

The SpringCard is seen as an UART mapped into the CPU memory. Source code supplied
under the Visor directory can provided serial port access in a way compatible with the (old)
SerialManager API.

Under Windows CE (PocketPC)

The SpringCard is seen as a serial port. As the serial port number is assigned by the
plug’n’play subsystem and can’t be guessed, you must lookup into the registry to find the
current number (see example in LibSrc/reader.c).
You can use the Windows API (CreateFile, ReadFile, WriteFile) to get direct access to the
GemCore. Opening the serial port powers up the GemCore, closing the serial port powers it
down.

Pro-Active SpringCard Developers Toolkit Reference
PDMD010 version 0.2 – 20/01/2003

Specification and content subject to changes.

NOTES..

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

PRO ACTIVE
PARC GUTENBERG

13 VOIE LA CARDON
F-91120 PALAISEAU

FRANCE

Phone +33 164 532 010
Fax. +33 164 532 018

Web site
http://www.pro-active.fr

e-Mail address
info@pro-active.fr

SpringCard web site
http://www.springcard.com

http://www.pro-active.fr/
mailto:info@pro-active.fr
http://www.springcard.com/

	SpringCard
	Developers’ Toolkit Reference
	Copyrights and disclaimers
	Trademarks
	SpringCard’ technical data
	Common
	SpringCard-CF
	SpringCard-VS

	The SpringCard API
	The PC/SC API
	Differences between the SpringCard API and the PC/SC standard
	Working with the SpringCard API
	Type definitions
	Error codes

	SpringCard functions – PC/SC compliant
	SpringCard functions – not PC/SC
	PC/SC functions not available under the SpringCard API
	Using the SpringCard-VS with synchronous cards
	Using the SpringCard-CF with synchronous cards
	Direct access to the SpringCard
	Under PalmOS (Visor)
	Under Windows CE (PocketPC)

