
SDK for PC/SC – Readme First

Overview

PC/SC is the de-facto standard to interface Personal Computers (PC)
with Smart Card (SC), and -of course- with Smart Card Readers &
Writers.

PC/SC is available on Windows and most Unix systems, including Linux
and Mac OS X (through the PCSC-Lite open source stack).

This SDK provides samples for the Windows platform.

Overview (cont.)

Most samples provided within this SpringCard SDK for PC/SC are also
available as ready-to-use binaries.

Just visit SpringCard QuickStart for PC/SC to download, install and run
these binaries in a nutshell

www.springcard.com/solutions/pcsc-quickstart.html

Content
✔ Compatible products
✔ Links to related documentations
✔ How to install the SDK
✔ License
✔ Directory structure
✔ Focus on the key examples
✔ Other examples provided in the SDK
✔ Going further
✔ Contacting support

Compatible products

Prox'N'Roll PCSC CSB6 / CSB6-HSP CrazyWriter / CrazyWriter HSP

 NFC'Roll H663/H512

Reference documentation you'll need
✔ PC/SC on Windows:

http://msdn.microsoft.com/
(enter “winscard” or “ScardTransmit” in the search box)

✔ Java PC/SC API (javax.smartcardio):
http://doc.java.sun.com/DocWeb/api/javax.smartcardio

✔ SpringCard's Simplified documentation of the PC/SC API
http://www.springcard.com/en/download/find/file/pmdz061

http://msdn.microsoft.com/
http://doc.java.sun.com/DocWeb/api/javax.smartcardio
http://www.springcard.com/en/download/find/file/pmdz061

Developer's Reference Manuals
✔ H663, CrazyWriter HSP, CSBHSB:

http://www.springcard.com/en/download/find/file/pmd2271
✔ H512, NFC'Roll:

http://www.springcard.com/en/download/find/file/pmd2176
✔ CSB6, Prox'N'Roll, CrazyWriter:

http://www.springcard.com/en/download/find/file/pmd841p

http://www.springcard.com/en/download/find/file/pmd2271
http://www.springcard.com/en/download/find/file/pmd2176
http://www.springcard.com/en/download/find/file/pmd841p

How to install the PC/SC SDK
✔ To install the complete SpringCard PC/SC SDK :

 Just unzip the archive on your hard drive
 Recommended location is C:\DEV\SPRINGCARD\PCSC

License

SpringCard's SDK are available free of charge.

The license allows you to use the featured software (binary or source)
freely, provided that the software or any derivative works is used only
in link with genuine SpringCard products.

Please read LICENSE.TXT for details.

Directory structure
✔ SAMPLES/C

 Sample programs written in ANSI C, and portable to virtually any OS supporting PC/SC
✔ SAMPLES/DOTNET

 Sample programs written in C# and VB, targetting the .NET framework
✔ SAMPLES/JAVA

 Sample programs written in Java, using the javax.smardcardio class available on some
systems

✔ SAMPLES/WIN32
 Samples programs written in either C or C++, that targets the Windows OS

Directory structure
✔ BINARIES

 Pre-compiled binaries for Windows. Some binaries rely on the .NET framework (v4,
client profile). Please install the framework beforehand

✔ DOCS
 Contains the documentation of the libraries provided by SpringCard to ease working

with some particular cards on top of PC/SC
✔ LIBRARY/DOTNET

 Source code of the libraries provided by SpringCard to ease working with PC/SC, and
with some particular cards on top of PC/SC, from C# or VB projects running in the .NET
framework

Focus on the key examples
✔ Memory Card Tool
✔ PC/SC Scriptor
✔ NFC Tag Tool

Memory Cards Tool

Memory Card Tool

A unique tool that:
✔ displays the content

of a memory card
✔ allows to write a

card content

Memory Card Tool
✔ In SAMPLES/DOTNET/MEMORYCARDTOOL
✔ Language = C#
✔ Target = .NET 4
✔ The project opens and builds using #Develop 4, the open-source IDE

for .NET :
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

✔ Porting to Microsoft Visual C# Express 2010 is straightforward

http://www.icsharpcode.net/OpenSource/SD/Default.aspx

Recognized card

Change the
number of sectors

Read card again,
with specified
number of sectors

Hexadecimal content
of each sector

ASCII translation of
each sector

Read sector with
specified keys

Update sector's
content (if allowed)

Change sector's
keys and access
conditions

Example: Mifare Classic

Example: Inside Contactless PicoTAG

Update card's content
(if allowed)

Hexadecimal content

ASCII translation

Address of each page
or block

Recognized card

Specify Max values
for P1 and P2

Read card again,
with specified P1
and P2

How to read / write a Memory Card
APDUs for a Mifare Classic
✔ To Read: FF F3 00 P2 Le, where P2 is the address of the block and Le is the number of bytes to read
✔ To Write: FF F4 00 P2 Lc Data, where Lc is the length of data to write and Data is the data itself
✔ Please refer to the Developer's guide to specify the keys, if the default keys don't work

APDUs for another Memory Card
✔ To Read : FF B0 P1 P2 Le, where P1 and P2 are the two address bytes (Most Significant Byte First), and Le the

number of bytes to read
✔ To Write : FF D6 P1 P2 Lc Data, where P1 and P2 are the two address bytes (Most Significant Byte First), Lc is

the number of bytes to write, and Data is the data to write
✔ Please refer to the Developer's guide to know the different allowed values for P1, P2, Le and Lc, for each

supported Memory Card

Source code for reading
The SpringCardPCSC.cs class is used.

First, create an ScardChannel object (“channel”), from the reader name :
✔ ScardReader reader = new ScardReader(readerName);
✔ ScardChannel channel = new SCardChannel(reader);

Then, to read “length” bytes at address “address”:
✔ CAPDU capdu = new CAPDU(0xFF, 0xB0, (byte) (address / 0x0100), (byte) (address % 0x0100), length);
✔ RAPDU rapdu = channel.Transmit(capdu);
✔ byte[] bytes_read = rapdu.data.GetBytes();

Source code for reading
The SpringCardPCSC.cs class is used.

First, create an ScardChannel object (“channel”), from the reader name :
✔ ScardReader reader = new ScardReader(readerName);
✔ ScardChannel channel = new SCardChannel(reader);

Then, to read “length” bytes at address “address”:
✔ CAPDU capdu = new CAPDU(0xFF, 0xB0, (byte) (address / 0x0100), (byte) (address % 0x0100), length);
✔ RAPDU rapdu = channel.Transmit(capdu);
✔ byte[] bytes_read = rapdu.data.GetBytes();

Source code for writing

Once the channel is created, we only need to send the writing APDU to
write “data” at address “address”:

✔ CAPDU capdu = new CAPDU(0xFF, 0xD6, (byte) (address / 0x0100),
(byte) (address % 0x0100), data);

✔ RAPDU rapdu = channel.Transmit(capdu);
✔ if (rapdu.SW != 0x9000)

 → Error !

How to recognize the card ?
✔ The ATR is used to recognize the card and differentiate between cards with sectors (Mifare Classic) and

cards without sectors.
 Check http://smartcard-atr.appspot.com/ for information about ATRs

✔ The ATR is further analyzed with cards without sectors, to identify precisely the card and deduce the
number of pages or blocks, and the number of bytes per page or block.

✔ For some ATRs (those from the Mifare UltraLight family), further identification is performed in reading the
pages until we find a duplication (same data again) or until an error occurs.

✔ To obtain the ATR, use the previously defined channel :
 string atr = channel.CardAtr.AsString("");

http://smartcard-atr.appspot.com/

How to detect when a card is inserted ?
We have already created an ScardReader object, from the reader's name :
✔ ScardReader reader = new ScardReader(readerName);

Once it is created, we can track all the changes on this reader, via the StartMonitor() method, in a background
thread:
✔ reader.StartMonitor(new ScardReader.StatusChangeCallback (ReaderStatusChanged));

ReaderStatusChanged is the callback, ie: the method called each time the background thread detects any change
on the reader. This method analyses the reader state and the ATR of the card.
✔ void ReaderStatusChanged(uint ReaderState, CardBuffer CardAtr) { … }

If a card is effectively inserted in the reader, it will then be read.

Advanced: reading in a background thread
✔ When a card is read, the main screen might freeze during the process.

✔ To avoid this behavior, reading is performed in a background thread.
 Thread cardthread = new Thread(card_read_proc);
 Or: Thread cardthread = new Thread(read_card_again);
 cardthread.Start();

✔ Once the card is read, the thread exits in the onError(), or in the onCardRead()
callback method.

PC/SC Scriptor
(csScriptor)

csScriptor

✔ This tool allows to send several
APDUs to a card in a row.

✔ For example, first ask the serial
number and then read the card

✔ It is ideal to work with SmartCards,
where several APDUs are needed to
first select an application and then
read is content

csScriptor
✔ In SAMPLES/DOTNET/CSCRIPTOR
✔ Language = C#
✔ Target = .NET 4
✔ The project opens and builds using #Develop 4, the open-source IDE

for .NET :
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

✔ Porting to Microsoft Visual C# Express 2010 is straightforward

http://www.icsharpcode.net/OpenSource/SD/Default.aspx

Write all the
APDUs in
this box

Uncheck this box if you
want the script to
continue even if errors
are encountered

Click on “Run” to send the APDUs to the card Choose output format

The card answers
are given in this
box

Click on “Clear” to
clear the result
screen

Overview

Example: a DESFire card

✔ Get Serial Number
✔ Select Application '00 00 00'
✔ GetVersion (3 APDUs)
✔ GetApplicationIDs

Example: a Calypso card

✔ Get Serial Number
✔ Select 1TIC.ICA Application
✔ Select MF
✔ Select EF_ICC
✔ Select DF_Calypso
✔ Select EF_Enr
✔ Read ENR, Record#1

Example: a payment card

✔ Select Payment Applications
 Try MasterCard and Visa

✔ Read all potential records

NFC Tags Tool
(NFCTool)

What is an NFC Forum tag ?
✔ An NFC Forum tag is a card, which content is valid in relation to the requirements of the NFC Forum

✔ 4 “types” are described :
 NFC Forum Type 1
 NFC Forum Type 2
 NFC Forum Type 3
 NFC Forum Type 4

✔ For more information :
 http://www.nfc-forum.org/home/

NfcTool
✔ Nfc Tool enables to:

 create NFC tags
 write their content
 read their content

✔ Supported contents:
 SmartPoster
 URI
 Text
 MIME Media
 vCard
 Wifi Handover

✔ Supported tags:
 Type 2
 Type 4

NDEF ? RTD ?
NDEF stands for “NFC Data Exchange Format”
✔ It contains a Type and a Payload
✔ The type defines the NDEF
✔ The payload contains the data

RTD stands for “Record Type Definition”.
An RTD is an NDEF, that has an NFC-specific type, which can be an:

 NFC Forum Well Known Type
 NFC External Type

NDEFs supported by NfcTool
Here is the list of all the NDEFS supported by NfcTool:
✔ RtdAlternativeCarrier
✔ RtdHandoverSelector
✔ RtdMedia
✔ RtdSmartPoster
✔ RtdText
✔ RtdUri
✔ RtdVCard

For more information on those objects, please visit our website, where online information is available:
RAJOUTER URL

NfcTool
✔ In SAMPLES/DOTNET/NFCTOOL
✔ Language = C#
✔ Target = .NET 4
✔ The project opens and builds using #Develop4, the open-source IDE

for .NET :
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

✔ Porting to Microsoft Visual C# Express 2010 is straightforward

http://www.icsharpcode.net/OpenSource/SD/Default.aspx

How to create a Smartposter ?

1. Place a tag on your
selected reader

2. Fill in the fields

3. Click on
“Write to the Tag”

Writing a Type 2 Tag
A Type 2 Tag is memory card.

To write, the APDU is “FF D6 P1 P2 Lc Data”, where P1 and P2 are the two address bytes (Most Significant Byte First), Lc is
the number of bytes to write, and Data is the data to write.

The NfcTagType2.WriteBinary() method is used, where the APDU is transmitted to the card through the ScardChannel
object (the same as in MemoryCardTool):
✔ ScardReader reader = new ScardReader(readerName);
✔ ScardChannel cardchannel = new SCardChannel(reader)
✔ CAPDU capdu = new CAPDU(0xFF, 0xD6, (byte) (address / 0x0100), (byte) (address % 0x0100), data)
✔ RAPDU rapdu = channel.Transmit(capdu);
✔ if (rapdu.SW != 0x9000)

 → Error !

Writing a Type 4 Tag
Assuming an already formatted Type 4 Tag, we first need to select the NDEF File: APDU=00 A4 00 0C 02 E1 04 .
We use the NfcTagType4.SelectFile(ushort file_id) method, where file_id=0xE104:
✔ CAPDU capdu = new CAPDU(0x00, 0xA4, 0x00, 0x0C, (new CardBuffer(file_id)).GetBytes());
✔ RAPDU rapdu = channel.Transmit(capdu);
✔ if (rapdu.SW != 0x9000)

 → Error !

Then, use the APDU “FF D6 P1 P2 Lc Data”, where P1 and P2 are the two address bytes (Most Significant Byte First), Lc is the number
of bytes to write, and Data is the data to write.
We use the NfcTagType4.WriteBinary(SCardChannel channel, ushort offset, byte[] buffer) method:
✔ CAPDU capdu = new CAPDU(0x00, 0xD6, (byte) (offset / 0x0100), (byte) (offset % 0x0100), buffer);
✔ RAPDU rapdu = channel.Transmit(capdu);
✔ if (rapdu.SW != 0x9000)

 → Error !

Formatting a DESFire EV1 into a Type 4 Tag
We use a Command Line Application to format a DESFire EV1 into a Type 4 tag : NfcDesfire.exe

This application is launched twice from the “DesfireFormatForm” form.
✔ ProcessStartInfo info = new ProcessStartInfo("NFCDesfire.exe", parameters);

 The first call erases the card, provided the given keys are correct
 The second call creates the CC File and the NDEF File

The main functions used by NfcDesfire.exe come from the pcsc_desfire.dll dll:
✔ FormatPICC
✔ CreateIsoApplication
✔ SelectApplication
✔ CreateIsoStdDataFile

How to read an NFC Tag
First thing to do: recognize the type of card
✔ This is done in the NfcTag.Recognize(...) method

 Check the ATR of the card to determine if it can be a Type 2
 If not, check if it is a Type 4
 If not, check if it is a DESFire EV1 that can be formatted

Once the ATR is analyzed, the NfcTag object is created
✔ It is entirely read (override method “Read()” in NfcTagType2 and NfcTagType4)
✔ Then, the content is parsed to determine the different NDEFs

 For Type2 tags, the ParseUserData(...) method parses the content into TLVs
 Then, the Ndef.Parse(byte[] buffer) static method parses the content into Ndef objects

At the end, the first valid Ndef object found is printed in the corresponding screen (SmartPoster, Vcard, URI, etc...)

Other examples provided in the SDK

Unit. tests
✔ SAMPLES/C/REFERENCE

 Various utilities, written in ANSI C, to perform the unitary tests of
our products / libraries

 Use Microsoft Visual C++ 6 (Visual Studio 98) to build them

NFC Tags in command line
✔ SAMPLES/C/NFCTOOLS

 Creates NFC Forum Tags (only type 2 and type 4 on Desfire EV1
supported) from the command line

 Use Microsoft Visual C++ Express 2010 to open and build the
project

PC/SC Monitor
✔ SAMPLES/C/PCSCMON

 pcscmon tracks every PC/SC reader connected to the computer,
and traces the insertion/removal of cards

 This is a derivative work from pcsc_scan
http://ludovic.rousseau.free.fr/softwares/pcsc-tools/
and as though distributed under the GPL license. SpringCard has
no link with the writer of this project. Please observe the specific
license policy.

SmartCard APDU from the command line
✔ SAMPLES/C/SMACADU

 Same idea as csScriptor but in pure C
 This is an open-source project, provided for convenience only.

SpringCard has no link with the writer of this project. Please
observe the specific license policy.

PC/SC Diagnostic for .NET
✔ SAMPLES/DOTNET/PCSCDIAG2

 Handy tool to check the installation of the readers, and to perform
'quick and dirty' tests in no time: send APDUs to a card, send
Control commands to a reader.

 Use #Develop 4 to open and build the project

Get UID
✔ SAMPLES/DOTNET/VBGETUID

 Show how to communicate with PC/SC readers and cards from
VB.NET

 Use Microsoft Visual Basic Express 2010 to open and build the
project

vCard printing and encoding
✔ SAMPLES/DOTNET/ZENIUSVCARD

 Creates your electronic business cards (vCard on NFC Forum Tags)
using an Evolis Zenius printer and the integrated SpringCard
CrazyWriter or CrazyWriter HSP

 Demonstrates how to synchronize the contactless encoding with
the printing and the moves of the card in the printer's path

 Use #Develop 4 to open and build the project

PC/SC Diagnostic for Win32
✔ SAMPLES/WIN32/PCSCDIAG

 Handy tool to check the installation of the readers, and to perform
'quick and dirty' tests in no time: send APDUs to a card, send
Control commands to a reader.

 Use Microsoft Visual C++ 6 (Visual Studio 98) to open and build
the project (needs MFC and VS 6 runtime)

Java PC/SC applet
✔ SAMPLES/JAVA/JPCSCAPPLET

 This applet acts as a 'bridge' between JavaScript and PC/SC. This
makes it possible for a web page to communicate with the readers
and cards (see www.nfcwizard.com for a live demo of an advanced
version of this applet!)

 No IDE – use java compiler from the command line
 The applet must be signed to be allowed to access the readers

from a web page running in the browser (loop for Verisign Code
Signing Certificate for Java on the web)

http://www.nfcwizard.com/

Java PC/SC monitor
✔ SAMPLES/JAVA/JPCSCMON

 Same as PC/SC Monitor but in Java
 No IDE – use java compiler from the command line

Going further

Interesting articles on CodeProjects

http://www.codeproject.com/Articles/23018/How-to-access-SmartCards-
simply-and-effectively

http://www.codeproject.com/Articles/16653/A-Smart-Card-Framework-
for-NET

http://www.codeproject.com/Articles/17013/Smart-Card-Framework-f
or-NET

http://www.codeproject.com/Articles/23018/How-to-access-SmartCards-simply-and-effectively
http://www.codeproject.com/Articles/23018/How-to-access-SmartCards-simply-and-effectively
http://www.codeproject.com/Articles/16653/A-Smart-Card-Framework-for-NET
http://www.codeproject.com/Articles/16653/A-Smart-Card-Framework-for-NET
http://www.codeproject.com/Articles/17013/Smart-Card-Framework-for-NET
http://www.codeproject.com/Articles/17013/Smart-Card-Framework-for-NET

www.springcard.com

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a commercial offer, a license, an advisory, fiduciary or professional relationship between Pro-Active and
you. No information provided in this document shall be considered a substitute for your independent investigation.
The information provided in document may be related to products or services that are not available in your country.
This document is provided "as is" and without warranty of any kind to the extent allowed by the applicable law. While PRO ACTIVE will use reasonable efforts to provide reliable information, we
don't warrant that this document is free of inaccuracies, errors and/or omissions, or that its content is appropriate for your particular use or up to date. PRO ACTIVE reserves the right to change the
information at any time without notice.
PRO ACTIVE does not warrant any results derived from the use of the products described in this document. PRO ACTIVE will not be liable for any indirect, consequential or incidental damages,
including but not limited to lost profits or revenues, business interruption, loss of data arising out of or in connection with the use, inability to use or reliance on any product (either hardware or
software) described in this document.
These products are not designed for use in life support appliances, devices, or systems where malfunction of these product may result in personal injury. PRO ACTIVE customers using or selling
these products for use in such applications do so on their own risk and agree to fully indemnify PRO ACTIVE for any damages resulting from such improper use or sale.

COPYRIGHT NOTICE

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS.
All other trademarks are property of their respective owners.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

All information in this document is either public information or is the intellectual property of PRO ACTIVE and/or its suppliers or partners.
You are free to view and print this document for your own use only. Those rights granted to you constitute a license and not a transfer of title : you may not remove this copyright notice nor the
proprietary notices contained in this documents, and you are not allowed to publish or reproduce this document, either on the web or by any mean, without written permission of PRO ACTIVE.

Copyright © PRO ACTIVE SAS 2013, all rights reserved.

EDITOR’S INFORMATION

Published by PRO ACTIVE SAS company with a capital of 227 000 €
RCS EVRY B 429 665 482

NAF 722C
VAT# : FR 27 429 665 482

V
:
\
D
o
s
s
i
e
r
s
\
n
o
t
i
c
e
s
\
C
o
m
m
u
n
\
P
C
S
C
\
[
P
M
D
1
3
1
8
0
-
A
A
]

S
D
K

f
o
r

P
C
S
C

-

R
e
a
d
m
e

F
i
r
s
t
.
o
d
p

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57

