

SpringCard Readers & RFID/NFC Scanners

Template System Reference Manual

www.springcard.com

DOCUMENT IDENTIFICATION

Category	Configuration and Softw	Configuration and Software Guide					
Family/Customer	Readers & RFID/NFC Sc	Readers & RFID/NFC Scanners					
Reference	PMA13205	PMA13205 Version AB					
Status	draft	Classification	Public				
Keywords	RDR, Prox'N'Roll RFID S	RDR, Prox'N'Roll RFID Scanner, FunkyGate, Prox'N'Drive RFID Scanner					
Abstract							

File name	[PMA13205-AB] RFID Scanner Template System.odt				
Date saved	11/04/14	Date printed	03/04/14		

REVISION HISTORY

Ver.	Date	Author	Valio	d. by	Approv.	Details
			Tech.	Qual.	by	
AA	27/09/13	JDA				Created from PMA8P3P
AB	03/04/14	JDA				Documented new template: NDEF, ISO 15693 Added support for Innovision Jewel/Topaz (NFC Forum type 1 Tag) and Kovio RF Barcode in ID Only templated

CONTENTS

1.INTRODUCTION	6
1.1.Abstract	
1.3.Audience 1.4.Support and updates	7
1.4.SUPPORT AND UPDATES. 2.PRINCIPLES.	
2.1.The Template system	
2.3.Editing the configuration	
2.4.Registers used by the Templates	
3.REFERENCE TABLES	10
3.1.LIST OF TEMPLATES BY LKL VALUES	10
3.2.List of values for LKL by Template	12
3.3.SUMMARY OF CONFIGURATION REGISTERS	14
4.IMPLEMENTATION MATRIX	15
4.1.Readers based on the CSB6 core	15
4.2.Readers based on the H663/K663/E663/S663 core	
4.3.Readers based on the K632 core	
5.ID-ONLY TEMPLATE	18
5.1.LOOKUP LIST (LKL REGISTER)	
5.2.Output format (TOF register)	
5.3.PREFIX (PFX REGISTER)	
5.4. Location (LOC register)	
5.5.MISCELLANEOUS OPTIONS (OPT REGISTER)	
6.MIFARE CLASSIC TEMPLATE	
6.1.LOOKUP LIST (LKL REGISTER)	22
6.2.1.Raw mode	
6.2.2.Decimal mode	
6.2.3.Short string mode (up to 16 bytes)	
6.2.4.Long string mode 6.3.PREFIX (PFX REGISTER)	
6.4.LOCATION OF DATA (LOC REGISTER)	
6.4.1.Using an AID in the MAD	
6.4.2.Using an absolute block address	27
6.5.Authentication key (AUT register)	28
7.MIFARE ULTRALIGHT TEMPLATE	29
7.1.Lookup List (LKL register)	
7.2.Size and format of output (TOF register)	
7.3.PREFIX (PFX REGISTER)	
7.4.Location of data (LOC register)	
8.MIFARE PLUS SL3 TEMPLATE	31

8.1.LOOKUP LIST (LKL REGISTER)	.31
8.2.Size and format of output (TOF register)	.31
8.3.Prefix (PFX register)	
8.4. LOCATION OF DATA (LOC REGISTER)	.32
8.5.Authentication key (AUT register)	.32
9.ISO 15693 MEMORY TEMPLATE	.33
9.1.LOOKUP LIST (LKL REGISTER)	33
9.2.Size and format of output (TOF register)	
9.3.Prefix (PFX register).	
9.4.Location of data (LOC register)	
10.DESFIRE EVO TEMPLATE	
10.1.LOOKUP LIST (LKL REGISTER)	25
10.2. Size and format of output (TOF register)	
10.3.Prefix (PFX register) 10.4.Location of data (LOC register)	
10.5. Authentication key (AUT register)	
10.5.1.No authentication mode	
10.5.2.Authenticated mode	
11.DESFIRE EV1 TEMPLATE	
12.ISO 7816-4 TEMPLATE	.39
12.1.LOOKUP LIST (LKL REGISTER)	.39
12.2.Size and format of output (TOF register)	
12.2.1.Raw mode	
12.2.2.Decimal mode	
12.2.3.Short string mode (up to 16 bytes)	
12.3.PREFIX (PFX REGISTER)	
12.4. LOCATION OF DATA (LOC REGISTER)	
12.5.ISO 7816-4 APDU 1 (AU1 REGISTER)	
12.6.ISO 7816-4 APDU 2 (AU2 REGISTER)	
12.7.ISO 7816-4 APDU 3 (AU3 register)	
13.NDEF DATA	
13.1.LOOKUP LIST (LKL REGISTER)	.45
13.2.Size and format of output (TOF register)	.46
13.3.Prefix (PFX register)	
13.4. Type Name and Format (TNF register)	.47
13.5.Type (TYP register)	.47
$13.6.U {\rm sing} \ TNF$ and TYP registers to select the data from an	
NDEF Record	
13.6.1.Reading a URI	
13.6.2.Reading a Text	
13.6.3.Reading a SpringCard data entry	
13.6.4.Reading a custom data entry	.48

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

1. INTRODUCTION

1.1. ABSTRACT

SpringCard offers Access Control Readers, OEM Readers and PC-connected Readers dedicated to the automated processing of contactless smart cards and RFID labels or tags:

- The FunkyGate family: wall-mounted access control readers, available with either Data+Clock, Wiegand, serial RS-232, serial RS-485, serial emulation on top of USB, and TCP over Ethernet communication options,
- The RFID Scanner family: USB products for the desktop working in keyboard emulation mode ("wedge")
- The RDR family: a wide range of OEM Readers featuring various communication options (RS-232, RS-TTL, RS-485, serial emulation on top of USB).

All these families share a large part of their feature, the core being their exclusive **Template System**, which allows them to accept mixed types of cards or tags, and to fetch virtually any kind of data from anywhere on the card or tag.

This document provides all necessary information to perform a low-level configuration of the **Templates** into a **SpringCard FunkyGate**, **RFID Scanner**, or **RDR** Reader.

1.2. SUPPORTED PRODUCTS

At the time of writing, this document refers to:

- Prox'N'Roll RFID Scanner: desktop USB reader, working in keyboard emulation mode,
- K632/RDR, K632/RDR-TTL, K632/RDR-232: a standalone OEM Reader based on the SpringCard K632 hardware,
- K663/RDR, K663/RDR-TTL, K663/RDR-232: a standalone OEM Reader based on the SpringCard K663 hardware,
- Prox'N'Drive/RDR: a Reader for automotive applications, based on the SpringCard K663 core,
- FunkyGate-DW, FunkyGate-DW NFC: a wall-mounted Access Control Reader with selectable Data+Clock, Wiegand or RS-485 interface,
- FunkyGate-IP NFC, FunkyGate-IP+POE NFC: a wall-mounted Access Control Reader with TCP over Ethernet interface,
- FunkyGate-SU: a wall-mounted Access Control Reader with selectable RS-232 or USB interface.

1.3. AUDIENCE

This manual is designed for use by application developers and system integrators. It assumes that the reader has a good knowledge of computer development and a good knowledge of the RFID/NFC technologies.

1.4. SUPPORT AND UPDATES

Useful related materials (product datasheets, application notes, sample software, HOWTOs and FAQs...) are available at SpringCard's web site:

www.springcard.com

Updated versions of this document and others are posted on this web site as soon as they are available.

For technical support enquiries, please refer to SpringCard support page, on the web at

www.springcard.com/support

2. PRINCIPLES

2.1. The Template system

SpringCard Readers & RFID/NFC Scanners are able to "read" different types of cards, and to access different sources of data of each cards.

A Template tells the reader

- Which type of PICC/VICC it shall look for,
- What and where is the data to fetch: protocol-defined "serial number" or data stored in PICC/VICC's memory, what is the authentication key is the data is protected...
- How to format the data when sending it to the target system (is it an ASCII string, a decimal number, or raw data that must be transmitted in hexadecimal for readability?)

Most readers are able to run up to **4 Templates**. When a PICC/VICC is presented in front of the reader, the reader tries its **Template** one after the other, until it succeeds getting some data from the PICC/VICC.

This means a single reader could return data from 1 to 4 different types of PICC/VICC, yet silently ignoring the ones that don't match any of the **Templates**.

The **Templates** are stored among other runtime parameters in the **reader's configuration registers** introduced below.

2.2. CONFIGURATION REGISTERS

The configuration is stored in a set of non-volatile¹ Configuration Registers, numbered $_{h}O1$ to $_{h}FE$. There are two groups of Registers:

- The Registers that control the global behaviour of the Reader are fully documented in the product's technical manual itself.
- The Registers that control the Template System are shared among all SpringCard Readers, and are documented in this manual.

When the reader starts, it loads its configuration from the registers present in its configuration memory. If a register is not present (never defined, or erased by a configuration tool), the reader uses the factory default value assigned to this register.

Changing the configuration of a reader means writing (or sometimes erasing) configuration registers into the reader's memory.

¹ The physical storage in either an E2PROM or a DATA FLASH. Please refer to the product's manual to know the write endurance of its configuration memory. Rewriting the configuration more times than specified may permanently damage the product.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

2.3. Editing the configuration

springcard

There are many ways to edit the Reader's Configuration Registers, depending on the Reader's hardware and specification:

- 1. Using the Console, either through a serial link for Readers featuring a serial communication port (RS232, RS484, serial-over-USB), or through the network for TCP/IP Readers with a Telnet server onboard,
- 2. Using the USB stream for RFID Scanners,
- 3. Using a Master Card,
- 4. Using a NFC mobile phone.

Please refer to the actual product's manual to know which method(s) your reader supports. If a dedicated configuration software is available for your reader, using this software is the preferred method to change the reader's configuration.

The new **SpringCard Configuration Tool** software **(ScMultiConf.exe, ref # SN14007)** for Windows makes it easy to edit the configuration of all the Readers.

2.4. REGISTERS USED BY THE TEMPLATES

Templates are numbered 1, 2, 3, 4.

Every Template uses 1 to 15 configuration registers, detailed in the next chapters.

The configuration registers belonging to a given Template are numbered

(template number << 4) + (index of configuration register within the template)

Therefore the configuration registers are

- h10 to h1F for Template 1 (we call h10 the base address for Template 1)
- ${}_{h}20$ to ${}_{h}2F$ for Template 2 (we call ${}_{h}20$ the base address for Template 2)
- ${}_{h}30$ to ${}_{h}3F$ for Template 3 (we call ${}_{h}30$ the base address for Template 3)
- h40 to h4F for Template 4 (we call h40 the base address for Template 4)
- (and so on if a reader has more than 4 Templates)

3. **R**EFERENCE TABLES

3.1. LIST OF TEMPLATES BY LKL VALUES

LKL	Supported PICCs/VICCs	Template(s)	Chapter
h01	ISO 14443 type A (up to layer 3)		
_h 02	ISO 14443 type B (up to layer 3)		
_h 03	ISO 14443 (A & B) (up to layer 3)		
_h 04	ISO 15693		5
h07	ISO 14443 (A & B) and ISO 15693	ID Only	5
_h 08	NXP ICODE1		
_h 0C	ISO 15693 and NXP ICODE1		
_h OF	All of the above		
h11	ISO 14443 type A (up to layer 4 "T=CL")		
h12	ISO 14443 type B (up to layer 4 "T=CL")	ISO 7816-4	12
h13	ISO 14443 (A & B) (up to layer 4 "T=CL")		
_h 20	Kovio RF Barcode		
h21	Innovision Topaz/Jewel	1	
h22	ST MicroElectronics SR family		
_h 23	ASK CTS256B and CTS512B	ID Only	5
_h 24	Inside Secure PicoTag (including HID iClass)		
_h 28	Felica		
_h 40	Receive NDEF by SNEP (peer-to-peer)		
_h 41	Read NDEF from NFC Forum type 1 Tags		
_h 42	Read NDEF from NFC Forum type 2 Tags		
_h 43	Read NDEF from NFC Forum type 3 Tags		
_h 44	Read NDEF from NFC Forum type 4 Tags (A & B)	NFC Forum NDEF Data	13
_h 4A	Read NDEF from NFC Forum type 4A Tags	NFC FORUM NDEF Data	15
_h 4B	Read NDEF from NFC Forum type 4B Tags		
_h 4E	Read NDEF from any NFC Forum Tag		
_h 4F	Read NDEF from any NFC Forum Tag and		
	Receive NDEF by SNEP (peer-to-peer)		
_h 54	ISO 15693	ISO 15693 Memory	9
_h 61	NXP Mifare Classic 1K & 4K	Mifare Classic	6

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

PMA13205-AB page 11 of 50 SpringCard Readers & RFID/NFC Scanners - Template System Reference Manual

_h 62	NXP Mifare UltraLight	Mifare UltraLight	7
_h 63	NXP Mifare Plus 2K & 4K, S & X, in SL3	Mifare Plus SL3	8
_h 71	NXP Desfire (EV0 or EV1)	Desfire (EV0 command set)	10
_h 72	Innovatron Radio Protocol (deprecated Calypso	ID Only	5
	cards)	ISO 7816-4	12
_h 73	NXP Desfire (EV1)	Desfire (EV1 command set)	11
hFF	Accept all supported PICCs/VICCs	ID Only	5

3.2. LIST OF VALUES FOR LKL BY TEMPLATE

Template	Chapter	LKL	Supported PICCs/VICCs
ID Only	5	_h 01	ISO 14443 type A (up to layer 3)
		_h 02	ISO 14443 type B (up to layer 3)
		_h 03	ISO 14443 (A & B) (up to layer 3)
		_h 04	ISO 15693
		_h 07	ISO 14443 (A & B) and ISO 15693
		h 08	NXP ICODE1
		_h 0C	ISO 15693 and NXP ICODE1
		_h OF	All of the above
		_h 20	Kovio RF Barcode
		_h 21	Innovision Topaz/Jewel
		_h 22	ST MicroElectronics SR family
		_h 23	ASK CTS256B and CTS512B
		_h 24	Inside Secure PicoTag (including HID iClass)
		_h 28	Felica
		_h 72	Innovatron Radio Protocol (deprecated Calypso
			cards)
		_h FF	Accept all supported PICCs/VICCs
NDEF data	13	_h 40	Receive NDEF by SNEP (peer-to-peer)
		_h 41	Read NDEF from NFC Forum type 1 Tags
		_h 42	Read NDEF from NFC Forum type 2 Tags
		_h 43	Read NDEF from NFC Forum type 3 Tags
		_h 44	Read NDEF from NFC Forum type 4 Tags
		_h 4A	Read NDEF from NFC Forum type 4A Tags
		_h 4B	Read NDEF from NFC Forum type 4B Tags
		_h 4E	Read NDEF from any NFC Forum Tag
		_h 4F	Read NDEF from any NFC Forum Tag and
			Receive NDEF by SNEP (peer-to-peer)
ISO 15693 Memory	9	_h 54	ISO 15693
		h J4	
Mifare Classic	6	_h 61	NXP Mifare Classic 1K & 4K
Mifare UltraLight	7	h62	NXP Mifare UltraLight
Mifare Plus SL3	8	h63	NXP Mifare Plus 2K & 4K, S & X, in SL3
			, ,
Desfire (EV0 command set)	10	_h 71	NXP Desfire (EV0 or EV1)
Desfire (EV1 command set)	11	_h 73	NXP Desfire (EV1)
	1		

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

SpringCard Readers & RFID/NFC Scanners - Template System Reference Manual

ISO 7816-4	12	_h 11	ISO 14443 type A (up to layer 4 "T=CL")
		_h 12	ISO 14443 type B (up to layer 4 "T=CL")
		_h 13	ISO 14443 (A & B) (up to layer 4 "T=CL")
		_h 72	Innovatron Radio Protocol (deprecated Calypso
			cards)

3.3. SUMMARY OF CONFIGURATION REGISTERS

Addr.	Template								
	ID Only	Mifare UL	Mifare Classic	ISO 7816-4	NDEF data				
		ISO 15693 Mem	Mifare Plus						
base +			Desfire						
h00	Lookup List (LKL)								
_h 01	Size and format of output (TOF)								
_h 02		(Dutput prefix (PFX)					
_h 03	Offset (LOC)	Location of	data (LOC)	Offset (LOC)	Offset (LOC)				
_h 04	Options (OPT)								
_h 05			Auth. (AUT)	APDU 1 (AU1)	TNF (TNF)				
_h 06				APDU 2 (AU2)	Type (TYP)				
_h 07				APDU 3 (AU3)					

The **base** address is:

- h10 for the 1st Template
- h20 for the 2nd Template
- h30 for the 3rd Template
- h40 for the 4th Template
- (and so on for readers having more than 4 Templates)

Example: suppose you want to read a Mifare Classic PICC using the 1^{st} Template. You'll put the LKL value specified for Mifare Classic cards ($_{h}61$) into register $_{h}10$, the location of data (LOC) into register $_{h}13$, and so on.

4. IMPLEMENTATION MATRIX

Pay attention that some hardware doesn't support all the protocols or access modes depicted in this document. On the other hand, new features are introduced regularly in the embedded software (firmware); therefore, old versions of the firmware may lack some features.

The **implementation matrix** below gives an overview of what is supported (or not) by every reader family.

4.1. READERS BASED ON THE CSB6 CORE

There's only one Reader in this family:

Prox'N'Roll RFID Scanner

Feature	See §	Supported?
NXP ICODE1 in ID-only template	5.1	Yes
Sony Felica in ID-only template		No
Kovio RF Barcode in ID-only template	5.1	Firmware ≥ 1.56
Innovision Topaz/Jewel, NFC Forum type 1 tag in ID-only template	5.1	Firmware ≥ 1.56
ASK CTS 256B and CTS512B in ID-only template	5.1	Yes
Mifare Plus in SL3	8	No
Desfire EV1	11	No
Long string in Templates: Mifare Classic, Mifare UltraLight, Mifare Plus, Desfire EV0 and Desfire EV1	6.2.4	Firmware ≥ 1.40
Not-byte-aligned data (shift bits left feature) in Templates:		
- Mifare Classic and Mifare Plus	6.4	Firmware ≥ 1.45
- Desfire EV0 and Desfire EV1	10.4	Firmware ≥ 1.45
- ISO 7816-4 templates	12.4	Firmware ≥ 1.44
Data from ISO 15693 tags	9	Firmware ≥ 1.56
NDEF data from NFC Forum Tags	13	Firmware ≥ 1.56
	13	types 1, 2 & 4 only
NDEF data in NFC peer-to-peer mode (SNEP over LLCP)	13	No

4.2. READERS BASED ON THE H663/K663/E663/S663 CORE

Readers in this family are:

- K663/RDR, K663/RDR-232, K663/RDR-TTL, Prox'N'Drive/RDR
- H663/RDR, H663/RDR-USB
- E663/RDR, FunkyGate-IP NFC, FunkyGate-IP+POE NFC,
- S663/RDR, FunkyGate-DW NFC

Feature	See §	Supported?
NXP ICODE1 in ID-only template		Planned
Sony Felica in ID-only template	5.1	Yes
Kovio RF Barcode in ID-only template	5.1	Yes
Innovision Topaz/Jewel, NFC Forum type 1 tag in ID-only template	5.1	Firmware ≥ 1.57
ASK CTS 256B and CTS512B in ID-only template	5.1	No
Mifare Plus in SL3	8	Firmware ≥ 1.57
Desfire EV1	11	Planned
Long string in Templates: Mifare Classic, Mifare UltraLight, Mifare Plus, Desfire EV0 and Desfire EV1	6.2.4	Yes
Not-byte-aligned data (shift bits left feature) in Templates:		
- Mifare Classic and Mifare Plus	6.4	Yes
- Desfire EV0 and Desfire EV1	10.4	Yes
- ISO 7816-4 templates	12.4	Yes
Data from ISO 15693 tags	9	Firmware ≥ 1.57
NDEF data from NFC Forum Tags	13	Firmware ≥ 1.57
NDEF data in NFC peer-to-peer mode (SNEP over LLCP)	13	Firmware ≥ 1.57

4.3. READERS BASED ON THE K632 CORE

Readers in this family are:

- K632/RDR, K632/RDR-232, K632/RDR-TTL
- FunkyGate-DW, FunkyGate-SU

Feature	See §	Supported?
NXP ICODE1 in ID-only template	5.1	Yes
Sony Felica in ID-only template		No
Kovio RF Barcode in ID-only template		No
Innovision Topaz/Jewel in ID-only template		No
ASK CTS 256B and CTS512B in ID-only template	5.1	Yes
Mifare Plus in SL3		No
Desfire EV1		No
Long string in Templates: Mifare Classic, Mifare UltraLight,	6.2.4	Firmware ≥ 1.40
Mifare Plus, Desfire EV0 and Desfire EV1	0.2.4	FILLIWALE 2 1.40
Not-byte-aligned data (shift bits left feature) in Templates:		
- Mifare Classic and Mifare Plus		No
- Desfire EV0 and Desfire EV1		No
- ISO 7816-4 templates		No
Data from ISO 15693 tags		No
NDEF data from NFC Forum Tags		No
NDEF data in NFC peer-to-peer mode (SNEP over LLCP)		No

5. **ID-ONLY TEMPLATE**

Use the **ID-Only Template** to fetch the serial number and some of the protocol-related constants from PICCs/VICCs.

Depending on the setting you define in the Template's LKL register, the reader may either

- Process any supported PICC or VICC,
- Process only a specific family of PICC or VICC.

5.1. LOOKUP LIST (LKL REGISTER)

LKL for ID-only – address: base + h00, size: 1 byte

Value	Meaning	Notes
h01	Accept ISO 14443 type A PICCs	
h 02	Accept ISO 14443 type B PICCs	
h03	Accept ISO 14443 type A and type B PICCs	
_h 04	Accept ISO 15693 VICCs	
h07	Accept ISO 14443 type A and type B PICCs and ISO 15693	
h 08	Accept NXP ICODE1 VICCs	A
_h 0C	Accept ISO 15693 and NXP ICODE1 VICCs	A
_h OF	Accept all of the above	
_h 20	Accept Kovio RF Barcode family	
_h 21	Accept Innovision Topaz/Jewel family	
_h 22	Accept ST MicroElectronics SR family	
_h 23	Accept ASK CTS256B and CTS512B	В
_h 24	Accept Inside Secure PicoTag (including HID iClass)	
_h 28	Accept Sony Felica Family	C
_h 72	Accept Innovatron Radio Protocol (deprecated Calypso cards)	
_h FF	Accept all supported PICCs/VICCs	

Notes (see the Implementation Matrix starting page 15 for details):

- A NXP ICODE1 is not supported by the hardware based on the RC663 chip
- B ASK CTS256B and CTS512B are not supported by the hardware based on the RC663 chip
- C SONY Felica is not supported by the hardware base on the RC632 chip

5.2. OUTPUT FORMAT (TOF REGISTER)

TOF for ID-only – abase + h01, size: 1 byte

Bits	Value	Meaning		
	Byte swapping			
7-6	b00 _d	Never swap ID bytes (the ID is transmitted "as is")		
	_b 01	RFU		
	_b 10	Swap ID bytes for single-s	ize (4 bytes) ISO 14443 type A UIDs only ²	
	_b 11	Swap ID bytes for all kind	of PICCs/VICCs	
		Padding (if data is short	er than specified output length)	
5	0 _d	Padd with h00 on the left		
	b1	Padd with hFF on the right	:	
		ISO 14443	3 type B protocol	
4	0 _d	Uses the PUPI (4 bytes) as	s the ID	
	b1	Uses the whole ATQB (11 bytes) as the ID		
		Output format	Output length	
3-0	0000d	Decimal	10 digits (after truncation to 4 bytes if needed)	
	_b 0001	Raw (hex)	Fixed, 4 bytes	
	_{7b} 0010	Raw (hex)	Fixed, 8 bytes	
	_b 0011	Raw (hex)	Fixed, 5 bytes	
	_b 0100	Raw (hex)	Fixed, 10 bytes	
	_b 0101	Raw (hex)	Fixed, 7 bytes	
	_b 0110	Raw (hex)	Fixed, 11 bytes	
	_b 0111	RFU	RFU	
	_b 1000	Raw (hex)	Fixed, 16 bytes	
	_b 1001	Raw (hex)	Fixed, 20 bytes	
	_b 1010	Raw (hex)	Fixed, 24 bytes	
	_b 1011	Raw (hex)	Fixed, 32bytes	
	_b 1100	Decimal	12 digits (after truncation to 5 bytes if needed)	
	_b 1101	Decimal	13 digits (after truncation to 5 bytes if needed)	
	_b 1110	Decimal	Variable number of digits	
	b1111	Raw (hex)	Variable length	

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

² Some old readers based on NXP documentations (not on ISO standards) uses this order by default for the Mifare short UIDs.

5.3. PREFIX (PFX REGISTER)

PFX for ID-only – base + $_{h}$ 02, size: 0 to 8 bytes

Uses the PFX register to transmit an arbitrary (constant) string before the data returned by this Template.

5.4. LOCATION (LOC REGISTER)

LOC for ID-only – base + h03, size: 0 or 1 byte

Uses the LOC register to specify an offset in a fixed-length output. This make it possible to select some bytes in the ID, not only the first ones.

See the examples related to non-ISO PICCs in the paragraph 5.6 for details.

5.5. MISCELLANEOUS OPTIONS (OPT REGISTER)

If this register is set, the reader adds a token to its output to tell the receiver what kind of PICC/VICC has been read.

OPT for ID-only – abase + h04, size: 1 byte

Bits	Value	Meaning
7-4		RFU
		Position of the "card type" token in the output
3-2	00 _d	Before the PFX constant (§ 5.3)
	_b 01	After the PFX constant, but before the actual data
	_b 10	After the actual data
	_b 11	RFU
		Add a "card type" token to the output
0-1	00 _d	Do not add the "card type" token
	_b 01	Add a <i>numerical value</i> as "card type" token, see table below
	_b 10	Add a <i>char</i> as "card type" token, see table below
	_b 11	RFU

Recognized card type	Numerical value	Char
ISO 14443 type A (at least level 3)	h01	А
ISO 14443 type B (at least level 3)	_h 02	В
Felica	h03	F
ISO 15693	_h 04	V
NXP ICODE1	_h 08	I (upper case i)
Inside Secure PicoTag (including HID iClass)	_h 10	i
Innovision Topaz/Jewel	_h 11	Z
Kovio RF Barcode	_h 18	k
ST MicroElectronics SR family	_h 20	S
ASK CTS256B or CTS512B	_h 40	а
Innovatron Radio Protocol (deprecated Calypso card)	_h 80	С

Values for the "card type" token (if OPT is present and non-zero)

5.6. Using the ID-only Template with NON-ISO PICCs

A few manufacturers still offer non standard cards, using either a proprietary frame format (protocol) or a proprietary command set, or both.

As those cards don't answer to ISO 14443 / ISO 15693 standard detection commands, a specific LKL value must be chosen to process them.

6. MIFARE CLASSIC TEMPLATE

Use the **Mifare Classic Template** to read data from a NXP Mifare Classic PICC (Mifare Classic 1K, Mifare Classic 4K) or from any compliant PICCs (including Mifare Plus running in Security Level 1³).

The reader may either

- Read arbitrary data; the data will be transmitted in hexadecimal format,
- Read a number (decimal output),
- Read a **string** (ASCII-encoded data).

The target data is pointed to either by:

- A sector AID in the MAD of the card (Mifare Access Directory⁴) plus an optional offset within the sector to select the block (or a given start byte in one the of the sector's block)
- An **absolute block address** plus an optional offset to select a given start byte in the block.

6.1. LOOKUP LIST (LKL REGISTER)

LKL for Mifare Classic – Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 61	Accept Mifare Classic PICCs (and compliant)	

³ The reader doesn't support the optional SL1 AES authentication of Mifare Plus PICCs.

⁴ Visit <u>www.mifare.net</u> for details. The reader supports both MAD1 (Mifare Classic 1K, up to 16 sectors) and MAD2 (Mifare Classic 4K, up to 40 sectors). As specified by NXP, the CRYPTO1 key to read the MAD1 or MAD2 sectors is hAOA1A2A3A4A5.

6.2. SIZE AND FORMAT OF OUTPUT (TOF REGISTER)

6.2.1. Raw mode

In raw mode, the block's data could take any value. The data is output in hexadecimal format (you may also use this format to read numbers stored in BCD).

TOF for Mifare Classic, raw mode – Address: base + h01, size: 1 byte

Bits	Value	Meaning	
	Byte swapping		
7	0 _d	Process the data "as is")	
	_b 1	Reverse the data before processing (last byte first)	
		Mode (raw/decimal or string)	
6	0 _d	Raw mode \rightarrow must be _b 0	
		Padding (if read length < specified output length)	
5	0 _d	Padd using '0' chars on the left	
	_b 1	Padd using 'F' chars on the right	
	Strip leading zeroes		
4	0 _d	Do not remove leading '0' chars	
	_b 1	Remove leading '0' chars	
	Size of output		
3-0	_b 0001	4 bytes	
	_b 0002	8 bytes	
	_b 0011	5 bytes	
	_b 0100	10 bytes	
	_b 0101	7 bytes	
	_b 0110	11 bytes	
	_b 1000	16 bytes	
	_b 1001	20 bytes 2 blocks must be read in this case	
	_b 1010	24 bytes - "-	
	_b 1011	32 bytes - "-	

6.2.2. Decimal mode

In decimal mode, the value read from the block is transmitted as a number, using digits from '0' to '9'.

Bits Value Meaning Byte swapping 7 Process the data "as is") _b0 Reverse the data before processing (last byte first) _b1 Mode (raw/decimal or string) 6 b_{d} Raw mode \rightarrow must be _b0 Padding 5 must be b0 _b0 **Strip leading zeroes** Do not remove leading '0' digits 4 _b0 Remove leading '0' digits _b1 **Output length** 4 bytes are read and transmitted in decimal 3-0 b000d 10 digits 5 bytes are read and transmitted in decimal 12 digits _b1100 _ " _ _b1101 13 digits Unlimited 16 bytes are read and transmitted in decimal _b1110

TOF for Mifare Classic, decimal mode – Address: base + h01, size: 1 byte

6.2.3. Short string mode (up to 16 bytes)

In short string mode, the block must store only valid ASCII bytes. The reader transmits the letters until either a zero value is read ($_{h}00$, i.e. $\langle 0' \rangle$ i.e. the "end of string" char) or the specified length is reached.

Bits	Value	Meaning	
		Byte swapping	
7	0 _d	Send the data "as is")	
	b1	Reverse the data before sending (last char first)	
		Mode (raw/decimal or string)	
6	b1	String mode \rightarrow must be _b 1	
		Fixed length	
5	0 _d	Variable length (no padding)	
	b1	Padd with ' ' chars (SPACE) on the right until the max output length is reached	
		Short/long string mode	
4	0 _d	Short string mode \rightarrow must be $_{\rm b}0$	
	Output length (max)		
	_b 0000 _d	16 characters	
3-0	_b 0001	1 character	
	_b 0010	2 characters	
	_b 0011	3 characters	
	_b 0100	4 characters	
	_b 0101	5 characters	
	_b 0110	6 characters	
	_b 0111	7 characters	
	_b 1000	8 characters	
	_b 1001	9 characters	
	_b 1010	10 characters	
	_b 1011	11 characters	
	_b 1100	12 characters	
	_b 1101	13 characters	
	_b 1110	14 characters	
	b1111	15 characters	

TOF for Mifare Classic, short string mode – Address: base + h01, size: 1 byte

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

6.2.4. Long string mode

In short string mode, the block must store only valid ASCII bytes. The reader transmits the letters until either a zero value is read ($_{h}00$, i.e. $\langle 0' \rangle$ i.e. the "end of string" char) or the specified length is reached.

Note: not all readers support this mode, please check the Implementation Matrix (page 15).

Bits	Value	Meaning	
Byte 0			
		Byte swapping	
7	0 _d	Send the data "as is")	
	b1	Reverse the data before sending (last char first)	
		Mode (raw/decimal or string)	
6	b1	String mode \rightarrow must be _b 1	
		Fixed length	
5	0 _d	Variable length (no padding)	
	b1	Padd with ' ' chars (SPACE) on the right until the max output length is reached	
	Short/long string mode		
4	b1	Long string mode \rightarrow must be _b 1	
		(unused)	
3-0	b0000d	Must be _b 0000	
Byte 1			
		(unused)	
7	0 _d	RFU (must be _b 0)	
		Output length (max)	
6-0	_h 01 to	From 1 to 64 chars	
	_h 40		

TOF for Mifare Classic, long string mode – Address: base + h01, size: 2 bytes

6.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

6.4. LOCATION OF DATA (LOC REGISTER)

6.4.1. Using an AID in the MAD

LOC for Mifare Classic, AID mode – Address: base + h03, size: 3, 4 or 5 bytes

Byte	Meaning	Notes / Valid range
Mandat	ory bytes	
0	AID of the sector, high-order byte	
1	AID of the sector, low-order byte	
2	Must be _h 00	
Optiona	l bytes	
3	Byte offset within the sector	$_{h}00$ to $_{h}EF$ ($_{h}00$ for block 0, $_{h}10$ for block 1)
4	Shift bits to the left	_h 00 to _h 07

6.4.2. Using an absolute block address

LOC for Mifare Classic, absolute mode – Address: base + h03, size: 3, 4 or 5 bytes

Byte	Meaning	Notes / Valid range
Mandatory bytes		
0	Must be ₀0000	
1	Must be houdd	
2	Address of <u>block</u>	h00 to hFF ⁵
Optiona	l bytes	
3	Byte offset within the block	h00 to h0E
4	Shift bits to the left	h00 to h07

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

⁵ It is technically possible to read the sector trailers, but the value is worthless since the keys are masked by zeros

6.5. AUTHENTICATION KEY (AUT REGISTER)

Reading data from a Mifare Classic involves a mandatory CRYPTO1 authentication. The CRYPTO1 algorithm uses 6-byte-long keys. Every sector is protected by two different keys, named 'key A' and 'key B'.

Use the AUT register to tell the reader

- The value of the CRYPTO1 key to access the sector holding the data
- Whether this key is the sector's 'key A' or 'key B'.

AUT for Mifare Classic – Address: base + h05, size: 7 bytes

Bits	Value	Meaning
Byte 0		
		Which key is it?
7	0 _d	Кеу А
	b 1	Кеу В
		(unused)
6-0	_h 00	Must be _b 0000000
Bytes 1 t	o 6	
Value of	the CRYP	TO 1 key (6 bytes)

7. MIFARE ULTRALIGHT TEMPLATE

Use the **Mifare UltraLight Template** to read data from a PICC within the NXP Mifare UltraLight family (including Mifare UltraLight C and NTAG203). Any PICC compliant with the **NFC Forum Type 2 Tag** specification could also be read using this template (but the reader is unable to decode the NFC Forum NDEF data).

The reader may either

- **Read arbitrary data**; the data will be transmitted in **hexadecimal** format,
- Read a number (decimal output),
- Read a string (ASCII-encoded data).

The target data is pointed to by an absolute page number (the data may occupy more than one page).

7.1. LOOKUP LIST (LKL REGISTER)

LKL for Mifare UltraLight – Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 62	Accept Mifare UltraLight PICCs (and compliant)	

7.2. SIZE AND FORMAT OF OUTPUT (TOF REGISTER)

Please refer to the TOF register for the Mifare Classic Template, § 6.2 on page 23.

7.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

7.4. LOCATION OF DATA (LOC REGISTER)

LOC for Mifare UltraLight – Address: base + h03, size: 1, 2 or 2 bytes

Byte	Meaning	Notes / Valid range	
Byte 0 (I	Byte 0 (Mandatory)		
0	Address of 1 st page	Depends on the PICC's actual memory size	
Optional bytes			
1	Offset within the 1 st page	h00 to h03	
2	Shift bits to the left	h00 to h07	

8. MIFARE PLUS SL3 TEMPLATE

Use the **Mifare Plus SL3 Template** to read data from a NXP Mifare Plus PICC (Mifare Plus 2K, Mifare Plus 4K) running in Security Level 3⁶.

Note: not all readers support this Template, please check the Implementation Matrix.

The reader may either

- **Read arbitrary data**; the data will be transmitted in **hexadecimal** format,
- Read a number (decimal output),
- Read a **string** (ASCII-encoded data).

The target data is pointed to either by:

- A sector AID in the MAD of the card (Mifare Access Directory⁷) plus an optional offset within the sector to select the block (or a given start byte in one the of the sector's block)
- An **absolute block address** plus an optional offset to select a given start byte in the block.

8.1. LOOKUP LIST (LKL REGISTER)

LKL for Mifare Plus – Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 63	Accept Mifare Plus PICCs (and compliant)	

8.2. Size and format of output (TOF register)

Please refer to the TOF register for the Mifare Classic Template, § 6.2 on page 23.

8.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

⁶ For Security Level 1, use the Mifare Classic Template. The reader does not support the Security Level 2.

⁷ Visit <u>www.mifare.net</u> for details. The reader supports both MAD1 (Mifare Plus 2K, up to 16 sectors in the MAD) and MAD2 (Mifare Plus 4K, up to 40 sectors). As specified by NXP, the AES key to read the MAD1 or MAD2 sectors is A0A1A2A3A4A5A6A7A0A1A2A3A4A5A6A7.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

8.4. LOCATION OF DATA (LOC REGISTER)

Please refer to the LOC register for the Mifare Classic Template, § 6.4 on page 27.

8.5. AUTHENTICATION KEY (AUT REGISTER)

Reading data from a Mifare Plus involves a mandatory AES authentication. The AES algorithm uses 16-byte-long keys. Every sector is protected by two different keys, named 'key A' and 'key B'.

Use the AUT register to tell the reader

- The value of the AES key to access the sector holding the data,
- Whether this key is the sector's 'key A' or 'key B',
- The secure-communication scheme to read the sector's blocks (this must match the options specified on the card, in the sector's access control bits).

AUT for Mifare Plus – Address: base + h05, size: 17 bytes

Bits	Value	Meaning	
Byte 0	Byte 0		
	Which key is it?		
7 _b 0 Key A			
	b1	Кеу В	
		(unused)	
6-3	b0000d	Must be _b 0000	
		Read mode	
2-0 b000 Reading encrypted, MAC on command, no MAC on response		Reading encrypted, MAC on command, no MAC on response	
	_b 001	Reading encrypted, MAC on command, MAC on response	
_b 010 Reading in plain, MAC on command, no MAC on response		Reading in plain, MAC on command, no MAC on response	
_b 011 Reading in plain, MAC on command, MAC on response		Reading in plain, MAC on command, MAC on response	
b100 Reading encrypted, no MAC on command, no MAC on response		Reading encrypted, no MAC on command, no MAC on response	
b101 Reading encrypted, no MAC on command, MAC on response		Reading encrypted, no MAC on command, MAC on response	
▶110 Reading in plain, no MAC on command, no MAC on response		Reading in plain, no MAC on command, no MAC on response	
	_b 111	Reading in plain, no MAC on command, MAC on response	
Bytes 1 t	Bytes 1 to 16		
Value of the AES key (16 bytes)			

9. ISO 15693 MEMORY TEMPLATE

Use the **ISO 15693 Memory Template** to read data from a VICC compliant with ISO 15693-3.

The reader may either

- Read arbitrary data; the data will be transmitted in hexadecimal format,
- Read a number (decimal output),
- Read a string (ASCII-encoded data).

The target data is pointed to by an absolute block number (the data may occupy more than one block).

9.1. LOOKUP LIST (LKL REGISTER)

LKL for ISO 15693 Memory – Address: base + h00, size: 1 byte

Value	Meaning	Notes
h64 Accept ISO 15693-3 VICCs		

9.2. SIZE AND FORMAT OF OUTPUT (TOF REGISTER)

Please refer to the TOF register for the Mifare Classic Template, § 6.2 on page 23.

9.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

9.4. LOCATION OF DATA (LOC REGISTER)

LOC for ISO 15693 Memory – Address: base + h03, size: 1, 2 or 3 bytes

Byte	Meaning	Notes / Valid range	
Byte 0 (Byte 0 (Mandatory)		
0	Address of 1 st block	Depends on the PICC's actual memory size	
Optional bytes			
1	Offset within the 1 st page	h00 to h03	
2	Shift bits to the left	h00 to h07	

10. DESFIRE EVO TEMPLATE

Use the **Desfire EV0 Template** to read data from a NXP Desfire PICC. The PICC could be either a Desfire EV0 or a Desfire EV1, but only the command set of the EV0 is available.

The reader may either

- Read arbitrary data; the data will be transmitted in hexadecimal format,
- Read a number (decimal output),
- Read a **string** (ASCII-encoded data).

The target data is pointed to by an **Application Identifier** and a **File Identifier**. An offset within the file could be specified.

10.1. LOOKUP LIST (LKL REGISTER)

LKL for Desfire EV0 – Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 71	h71 Accept Desfire PICCs (and compliant), and use the EV0 command set	

10.2. Size and format of output (TOF register)

Please refer to the TOF register for the Mifare Classic Template, § 6.2 on page 23.

10.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

10.4. LOCATION OF DATA (LOC REGISTER)

LOC for Desfire, EV0 mode – Address: base + h03, size: 4, 7, 8 or 9 bytes

Byte	Meaning	Notes / Valid range		
Mandat	Mandatory bytes			
0	Application ID, byte 0 (MSB)	The reader stores the AID in MSB-first format		
1	Application ID, byte 1	(in the Desfire command set the AID is LSB-		
2	Application ID, byte 2 (LSB)	first)		
3	File ID within the application			
Optional bytes				
4	Offset within the sector, byte 0 (MSB)	The reader stores the offset in MSB-first		
5	Offset within the sector, byte 1	format (in the Desfire command set the offset		
6	Offset within the sector, byte 2 (LSB)	is LSB-first)		
7	Read length	Could be $_{h}$ 00 if the file is shorter than 64		
		bytes.		
		Must be set to a non-zero value below $_{\rm h}40$		
		otherwise.		
8	Shift bits to the left	_h 00 to _h 07		

10.5. AUTHENTICATION KEY (AUT REGISTER)

Reading data from a Desfire EVO involves an optional DES or 3-DES authentication.

10.5.1. No authentication mode

AUT for Desfire, authenticated mode – Address: base + h05, size: 0 bytes

Leave this register blank to disable the authentication.

10.5.2. Authenticated mode

In this mode, a DES or 3-DES authentication is performed on the Desfire application, before reading the data from the file, and a session key is generated.

The DES or 3-DES algorithm uses 16-byte-long keys.

Use the AUT register to tell the reader

- The number of the key within the application,
- The value of the DES or 3-DES key,

The secure-communication scheme to read the file's data (this must match the allowed modes specified on the card, in the file's access control bits).

AUT for Desfire, authenticated mode – Address: base + h05, size: 17 bytes

Bits	Value	Meaning		
Byte 0	Byte 0			
		Read mode		
7-6	b00d	Plain		
	_b 01	MACed with using the session key		
	_b 10	RFU		
	_b 11	Encrypted using the session key		
		(unused)		
5-4	b00d	Must be _b 00		
		Key number within the Desfire application		
3-0	_b 0000 to	(Value _b 1111 is not allowed by the Desfire EV0 card)		
	_b 1110			
Bytes 1 to 16				
Value of the DES or 3-DES key (16 bytes)				
For a DES key, both halves of the key are equal.				

11. DESFIRE EV1 TEMPLATE

Not yet implemented.

12. ISO 7816-4 TEMPLATE

ISO 7816-4 is the standard for smart card commands. According to this standard, the card is structured as a (lightweight) file-system, providing Directory Files and Elementary Files. Functions are defined to select the files and read the data from them. Every function call is called an "APDU". The card's response is always terminated by a 2-B status word which denotes the success (value $_{\rm h}9xxx$, typically $_{\rm h}9000$) or the failure (value $_{\rm h}6xxx$).

Using the **ISO 7816-4 Template**, the reader is able to send 1, 2 or 3 APDUs and to find the data in the last card's response. The communication with the card is performed using either the **ISO 14443-4 protocol** ("T=CL") or the Innovatron Radio Protocol (deprecated Calypso cards).

12.1. LOOKUP LIST (LKL REGISTER)

Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 11	Read data from ISO 14443-4 type A PICCs	
h12	Read data from ISO 14443-4 type B PICCs	
h13	Read data from both ISO 14443-4 type A and type B PICCs	
_h 72	Read data from Calypso cards using the Innovatron Radio Protocol	

12.2. SIZE AND FORMAT OF OUTPUT (TOF REGISTER)

12.2.1. Raw mode

In raw mode, data could take any value. The data is output in hexadecimal format (you may also use this format to read numbers stored in BCD).

Bits	Value	Meaning	
	Byte swapping		
7	0 _d	Process the data "as is")	
	b1	Reverse the data before processing (last byte first)	
		Mode (raw/decimal or string)	
6	0 _d	Raw mode \rightarrow must be _b 0	
		Padding (if read length < specified output length)	
5	0 _d	Padd using '0' chars on the left	
	_b 1	Padd using 'F' chars on the right	
	Strip leading zeroes		
4	0 _d	Do not remove leading '0' chars	
	_b 1	Remove leading '0' chars	
		Size of output	
3-0	b0000d	4 bytes	
	_b 0001	8 bytes	
	_b 0010	5 bytes	
	_b 0011	10 bytes	
	_b 001	7 bytes	
	_b 0110	11 bytes	
	_b 1000	16 bytes	
	b1001	20 bytes	
	_b 1010	24 bytes	
	b1011	32 bytes	

TOF for ISO 7816-4, raw mode – Address: base + h01, size: 1 byte

12.2.2. Decimal mode

In decimal mode, the value read from the card is transmitted as a number, using digits from '0' to '9'.

Bits	Value	Meaning		
	Byte swapping			
7	0 _d	Process the data	"as is")	
	b1	Reverse the data	before processing (last byte first)	
	Mode (raw/decimal or string)			
6	0 _d	Raw mode \rightarrow mu	ust be ₀0	
	Padding			
5	0 _d	must be _b 0		
			Strip leading zeroes	
4	0 _d	Do not remove le	eading '0' digits	
	_b 1	Remove leading '0' digits		
	Output length			
3-0	0000 _d	10 digits	4 bytes are read and transmitted in decimal	
	_b 1100	12 digits	5 bytes are read and transmitted in decimal	
	_b 1101	13 digits	_ " _	
	_b 1110	Unlimited	16 bytes are read and transmitted in decimal	

TOF for ISO 7816-4, decimal mode – Address: base + h01, size: 1 byte

12.2.3. Short string mode (up to 16 bytes)

In short string mode, the data field returned by the card must containt only valid ASCII bytes. The reader transmits the letters until either a zero value is read ($_h00$, i.e. $\langle 0' \rangle$ i.e. the "end of string" char) or the specified length is reached.

Bits	Value	Meaning		
	Byte swapping			
7	0 _d	Send the data "as is")		
	b1	Reverse the data before sending (last char first)		
	Mode (raw/decimal or string)			
6	b1	String mode \rightarrow must be _b 1		
		Fixed length		
5	0 _d	Variable length (no padding)		
	b1	Padd with ' ' chars (SPACE) on the right until the max output length is reached		
		Short/long string mode		
4	0 _d	Short string mode \rightarrow must be $_{b}$ 0		
	,	Output length (max)		
	_b 0000 _d	16 characters		
3-0	_b 0001	1 character		
	_b 0010	2 characters		
	_b 0011	3 characters		
	_b 0100	4 characters		
	_b 0101	5 characters		
	_b 0110	6 characters		
	_b 0111	7 characters		
	_b 1000	8 characters		
	_b 1001	9 characters		
	_b 1010	10 characters		
	_b 1011	11 characters		
	_b 1100	12 characters		
	_b 1101	13 characters		
	_b 1110	14 characters		
	b1111	15 characters		

TOF for ISO 7816-4, short string mode – Address: base + h01, size: 1 byte

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVE logo are registered trademarks of PRO ACTIVE SAS. All other brand names, product names, or trademarks belong to their respective holders. Information in this document is subject to change without notice. Reproduction without written permission of PRO ACTIVE is forbidden.

12.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

12.4. LOCATION OF DATA (LOC REGISTER)

LOC for ISO 7816-4 – Address: base + h03, size: 0, 1 or 2 bytes

Byte	Meaning	Notes / Valid range	
Optional bytes			
0	Offset within the response to the last APDU		
1	Shift bits to the left	_h 00 to _h 07	

12.5. ISO 7816-4 APDU 1 (AU1 REGISTER)

Typically, this is a SELECT instruction (SELECT APPLICATION or SELECT DIRECTORY FILE).

AU1 for ISO 7816-4 – Address: base + h05, size: 4 to 32 bytes

Notes:

- This 1st APDU can't be left empty,
- The reader's receive buffer is limited to 128 bytes. Specify a L_E below h80 to make sure the card's response will not overflow this buffer,
- The reader does check the status word. The card must return a "success" SW (^h9xxx). Otherwise, the reader stops the transactions.

12.6. ISO 7816-4 APDU 2 (AU2 REGISTER)

Typically, this is another SELECT instruction (SELECT ELEMENTARY FILE), unless the file could be implicitly selected by a SFI (Short File Identifier) within a READ instruction.

AU2 for ISO 7816-4 – Address: base + h06, size: 4 to 32 bytes

Notes:

- This 2nd APDU could be left empty (in this case the data is taken from the response to the 1st APDU),
- The reader's receive buffer is limited to 128 bytes. Specify a L_E below h80 to make sure the card's response will not overflow this buffer,
- The reader does check the status word. The card must return a "success" SW (h9xxx). Otherwise, the reader stops the transactions.

12.7. ISO 7816-4 APDU 3 (AU3 REGISTER)

Typically, this is a READ instruction (READ BINARY or READ RECORD).

AU3 for ISO 7816-4 – Address: base + h07, size: 4 to 32 bytes

Notes:

- This 3rd APDU could be left empty (in this case the data is taken from the response to the 2nd APDU),
- The reader's receive buffer is limited to 128 bytes. Specify a L_E below h80 to make sure the card's response will not overflow this buffer,
- The reader does check the status word. The card must return a "success" SW (h9xxx). Otherwise, the reader stops the transactions.

13. NDEF DATA

13.1. LOOKUP LIST (LKL REGISTER)

LKL for NDEF Data – Address: base + h00, size: 1 byte

Value	Meaning	Notes
_h 40	Receive NDEF by SNEP (peer-to-peer)	
_h 41	Read NDEF from NFC Forum type 1 Tags	
_h 42	Read NDEF from NFC Forum type 2 Tags	
_h 43	Read NDEF from NFC Forum type 3 Tags	
_h 44	Read NDEF from NFC Forum type 4 Tags (A & B)	
_h 4A	Read NDEF from NFC Forum type 4A Tags	
_h 4B	Read NDEF from NFC Forum type 4B Tags	
_h 4E	Read NDEF from any NFC Forum Tag	
_h 4F	Read NDEF from any NFC Forum Tag and Receive NDEF by SNEP (peer-to-	
	peer)	

13.2. Size and format of output (TOF register)

When the NDEF Data template is selected, only "Long string" mode is supported.

The NDEF Record's Payload must contain only valid ASCII bytes. The reader transmits the letters until either a zero value is read ($_{h}00$, i.e. $\langle 0' \rangle$ i.e. the "end of string" char) or the specified length is reached.

TOF for NDEF Data, long string mode – Address: base + h01, size: 2 bytes

Bits	Value	Meaning		
Byte 0	Byte 0			
	Byte swapping			
7	0 _d	Send the data "as is")		
	_b 1	Reverse the data before sending (last char first)		
		Mode (raw/decimal or string)		
6	_b 1	String mode \rightarrow must be $_{b}1$		
	Fixed length			
5	0 _d	Variable length (no padding)		
	_b 1	Padd with ' ' chars (SPACE) on the right until the max output length is reached		
	Short/long string mode			
4	_b 1	Long string mode \rightarrow must be _b 1		
	(unused)			
3-0	b0000d	Must be _b 0000		
Byte 1	Byte 1			
(unused)				
7	0 _d	RFU (must be ₀0)		
Output length (max)				
6-0	_h 01 to	From 1 to 255 chars		
	_h FF	0 means "no limit"		

13.3. PREFIX (PFX REGISTER)

Address: base + h02, size: 0 to 8 bytes

Use the PFX register to transmit an arbitrary (constant) string before the data returned by this Template (in case of numerous templates, this is useful to know which of the templates the PICC/VICC has triggered).

13.4. Type Name and Format (TNF register)

TNF for NDEF Data – Address: base + h05, size: 1 byte

Value	Meaning	Notes
_h 01	Read a NFC Forum well-known record (NFC RTD)	TYP register
_h 02	Read a Media record (RFC 2046)	contains
_h 03	Read an absolute URI (RFC 3986)	the actual
_h 04	Read a NFC Forum external record (NFC RTD)	type
_h 53	Read a SpringCard data entry (see § 13.6.3)	TYP register
_h 54	Read a Text (see § 13.6.2)	must
_h 55	Read a URI (see § 13.6.1)	remain
_h FF	Read either a SpringCard data entry, a URI or a Text	empty

13.5. TYPE (TYP REGISTER)

TYP for NDEF Data – Address: base + h06, size: 0 to 16 bytes

Use the TYP register to select the NDEF Record you want to read. Please refer to the specifications of NFC Forum NDEF Data and Records, and to the specifications of the MIME Media, to provide a valid TNF,TYP combination.

For instance, two valid TNF,TYP combinations are:

TNF=h01, TYP=h55 ("U"): this is a URI as specified in NFC Forum's "RTD URI" specification. Note that in this case the raw URI is returned, which is not the case when TNF=h55 (see § 13.6.1)
TNF=h02, TYP=h74 65 78 74 2F 70 6C 61 69 6E ("text/plain"): this is a Media record, the MIME type is plaintext

13.6. Using **TNF** and **TYP** registers to select the data from an **NDEF** Record

13.6.1. Reading a URI

If TNF= $_{h}55$ (and TYP is empty), the Reader tries to read either

- An absolute URI record (RFC 3986),
- A URI record according to the NFC Forum "RTD URI" specification,
- A URI record within a smartposter record according to the NFC Forum "RTD SmartPoster" specification,

In the first case, the record's content is returned "as is". In the two later cases, the record's content is expanded into a real URI string according to the NFC Forum "RTD URI" specification.

The Reader supports the ASCII character set only. Valid characters are $_{h}20$ to $_{h}7F$ only.

Note that the Reader stops when the first valid URI is found in the NDEF message. It is not possible to read a later record.

13.6.2. Reading a Text

If TNF= $_{h}54$ (and TYP is empty), the Reader tries to read either

- A text media (RFC2046 with MIME type set to "text/plain"),
- A Text record according to the NFC Forum "RTD Text" specification,
- A Text record within a smartposter record according to the NFC Forum "RTD SmartPoster" specification,

In the first case, the record's content is returned "as is". In the two later cases, the "lang" part of the Text content is removed.

The Reader supports the ASCII character set only. Valid characters are h20 to h7F only.

Note that the Reader stops when the first valid Text is found in the NDEF message. It is not possible to read a later record. It is not possible to select a particular "lang" value.

13.6.3. Reading a SpringCard data entry

If TNF= $_{h}53$ (and TYP is empty), the Reader tries to read a Media record having type "text/x-springcard-scan-data".

13.6.4. Reading a custom data entry

Set TNF= $_h02$ and use a custom MIME Media type (in TYP) to access your custom data.

In this mode, the Reader supports only reading ASCII string. Therefore, your custom data shall be in the "text/" family.

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a commercial offer, a license, an advisory, fiduciary or professional relationship between PRO ACTIVE and you. No information provided in this document shall be considered a substitute for your independent investigation.

The information provided in document may be related to products or services that are not available in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the applicable law. While PRO ACTIVE will use reasonable efforts to provide reliable information, we don't warrant that this document is free of inaccuracies, errors and/or omissions, or that its content is appropriate for your particular use or up to date. PRO ACTIVE reserves the right to change the information at any time without notice.

PRO ACTIVE doesn't warrant any results derived from the use of the products described in this document. PRO ACTIVE will not be liable for any indirect, consequential or incidental damages, including but not limited to lost profits or revenues, business interruption, loss of data arising out of or in connection with the use, inability to use or reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these product may result in personal injury. PRO ACTIVE customers using or selling these products for use in such applications do so on their own risk and agree to fully indemnify PRO ACTIVE for any damages resulting from such improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of PRO ACTIVE and/or its suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you constitute a license and not a transfer of title : you may not remove this copyright notice nor the proprietary notices contained in this documents, and you are not allowed to publish or reproduce this document, either on the web or by any mean, without written permission of PRO ACTIVE.

Copyright © PRO ACTIVE SAS 2014, all rights reserved.

EDITOR'S INFORMATION **PRO ACTIVE SAS** company with a capital of 227 000 € RCS EVRY B 429 665 482 Parc Gutenberg, 13 voie La Cardon 91120 Palaiseau – FRANCE

CONTACT INFORMATION

For more information and to locate our sales office or distributor in your country or area, please visit

www.springcard.com