
Smartcards and contactless smartcards

Integrators's and Implementer's Guide

www.springcard.com

Ref. PMD17041-AA

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Document identification
Category Developer's Manual

Classification Public

Reference PMD17041

Version AA

Status Approved

Keywords

Abstract

File name [PMD17041-AA] Smartcards and contactless smartcards - Integrator's and
Implementers's Guide.odt

Print date 19/01/18

Revision history

Ver. Date Author
Valid. by Approv.

by Details
Tech. Qual.

AA 08/01/18 JDA CMA JDA Creation

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 2 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Contents
1. Introduction...10

1.1. Overview...10
1.2. Audience..10
1.3. Related documents...11
1.4. Product listing..11
1.5. Reference documents...13

1.5.1. International standards...13
1.5.2. Public specifications..14

1.6. Support and updates..14
1.7. Conventions used in this document...15

1.7.1. Typographic conventions for numbers...15
1.7.2. Object size...15
1.7.3. Iconography...15

1.8. Glossary and acronyms...16
2. Smartcards and couplers – Concepts and definitions...17

2.1. What is a smartcard?..17
2.2. What is a smartcard, according to ISO/IEC 7816...17

2.2.1. Form-factor and electrical interface...17
2.2.2. Protocol...19
2.2.3. Software (application) interface...21
2.2.4. The grammar...22
2.2.5. The vocabulary..23

2.3. Variations around ISO/IEC 7816...30
2.3.1. SAM and HSM...30
2.3.2. Secure elements and other “smartcard chips without card”......................................30
2.3.3. Wired-logic, storage only card..32
2.3.4. Contactless cards..33
2.3.5. Wired-logic, storage only contactless cards...34

2.4. The coupling device or coupler..34
3. Contactless cards, RFID, NFC – concepts and standards...35

3.1. ‘Proximity’ contactless smartcards...35
3.1.1. Basics...35
3.1.2. The standards for proximity cards..37
3.1.3. Polling..38
3.1.4. Anticollision...39
3.1.5. Single card approach...39
3.1.6. Transport and application protocols..40
3.1.7. Contactless smartcards and PC/SC...41
3.1.8. Contactless only, dual, two-chip cards...41

3.2. Wired-logic proximity contactless cards..42

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 3 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.2.1. Support of wired-logic cards by standard PCDs...42
3.2.2. Support of wired-logic contactless cards under PC/SC...43

3.3. Operating distance: size matters..44
3.3.1. Decrease of the RF field with the distance to the PCD..44
3.3.2. Field level required by the PICC..45
3.3.3. Size of the PICC...46
3.3.4. Which classes a coupler has to support?...49
3.3.5. Actual operating distance...49

3.4. ‘Vicinity’ contactless cards..51
3.4.1. The need for hand free systems...51
3.4.2. The standards..52
3.4.3. Vicinity contactless cards vs RFID HF tags or labels...54

3.5. NFC Tags..56
3.5.1. NFC and the NFC Forum...56
3.5.2. The concept behind NFC Tags..57
3.5.3. NFC Forum Data Exchange Format and Record Types...57
3.5.4. List of compliant PICCs / VICCs...58

3.6. Key actors and brands...61
3.6.1. NXP, ex Philips Semiconductors..61
3.6.2. STMicroElectronics..65
3.6.3. Infineon...66
3.6.4. Texas Instrument...66
3.6.5. Atmel (now Microchip)...67

4. PC/SC Stack – role, specificities, alternatives...68
4.1. Introduction...68
4.2. The PC/SC architecture (and vocabulary)..68

4.2.1. Smartcards, readers and drivers...68
4.2.2. The middleware..69
4.2.3. The API...69
4.2.4. Helpers..69

4.3. PC/SC on Microsoft Windows...71
4.3.1. Official documentation...71
4.3.2. Technical implementation...72
4.3.3. Writing and using card helpers...72
4.3.4. Limitations...73

4.4. Linux and other UNIX-like systems...73
4.5. macOS X...74
4.6. Android..75

5. An application that uses PC/SC – Introduction to the API and typical workflow.......................76
5.1. Introduction...76
5.2. Establish a PC/SC context..77
5.3. List the PC/SC couplers...78
5.4. Is there a card in the coupler?..80
5.5. Connect to the card..82

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 4 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.6. Send commands to the card – and receive its responses...84
5.7. Retrieve a coupler’s (or driver’s) meta-data..86
5.8. How to retrieve the card’s ATR?...87

5.8.1. SCardGetAttrib method..87
5.8.2. SCardGetStatusChange method...88
5.8.3. SCardStatus method...89

5.9. Disconnect from the card...90
5.10. Release the PC/SC context..91

6. Using contactless cards with PC/SC..92
6.1. Introduction...92
6.2. Connecting to a contactless card...92

6.2.1. Protocol...92
6.2.2. Share mode...93
6.2.3. Sample code..94

6.3. Retrieving the card’s protocol level ID..96
6.3.1. Motivation...96
6.3.2. ID name, length and construction among the standards..97
6.3.3. Are ISO/IEC 14443 A 4-byte UIDs really unique?...98
6.3.4. Random IDs...98
6.3.5. The GET DATA (ID) instruction..99

6.4. Recognizing the contactless card type...101
6.4.1. The ATR of a wired-logic contactless card..102
6.4.2. The ATR of a contactless smartcard...106
6.4.3. Obtaining technical data through the GET DATA instruction....................................107

6.5. Exchanging APDUs with a contactless smartcard..107
6.5.1. Case of a smartcard fully compliant with ISO/IEC 7816-4...108
6.5.2. Case of a smartcard having a custom APDU format..109

6.6. The embedded APDU Processor for wired-logic cards..113
6.6.1. Generic wired-logic card read/write instructions..113
6.6.2. MIFARE Classic authentication and keys..113
6.6.3. ISO/IEC 15693-3 instructions..114

7. Creating efficient and robust PC/SC applications..115
7.1. Connecting to the right coupler...115

7.1.1. Coupler names (and the issues behind that)...115
7.1.2. Identifying a SpringCard PC/SC contactless coupler..116

7.2. Using background threads..117
7.2.1. Monitoring the coupler(s) and card(s) in background..117
7.2.2. SCardConnect “loop” in the background...118
7.2.3. SCardTransmit in the background..118

7.3. Recommended flowchart with 1+2 threads..119
7.4. Understanding the errors (and implementing a smart recovery).....................................120

7.4.1. Errors that should be recovered nicely by the application..121
7.4.2. “User related” errors..121
7.4.3. Errors that shall never occur after the application has been debugged..................122

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 5 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7.4.4. System errors..122
8. Smartcard applications without PC/SC..123

8.1. SpringCard zero-driver CCID implementation..123
8.2. Android lightweight CCID implementation..124

8.2.1. Motivation...124
8.2.2. Technical architecture...124
8.2.3. Frequent issues with mainstream Android tablets..126

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 6 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration index
Illustration 1: Smartcard formats...18
Illustration 2: Smartcard contacts...18
Illustration 3: Principles of card operation: power-up, ATR, and command/response sequences.20
Illustration 4: Format of C-APDUs...22
Illustration 5: Format of R-APDUs...23
Illustration 6: The contact and contactless protocol stacks..33
Illustration 7: PCD → PICC remote power principle...36
Illustration 8: How the card and the coupler communicates...36
Illustration 9: A first-generation's dual-access card, featuring a copper coil welded behind the
ISO/IEC 7816 module...42
Illustration 10: RF field level against distance to the antenna, with the same H0, for different
diameters...44
Illustration 11: RF field level against distance to the antenna, for different actual readers...........45
Illustration 12: The SpringField Florida is a small testing tool, based on a NXP NTAG chip, that
shows how far the RF field is strong enough to power a contactless card......................................46
Illustration 13: Definition of PICC classes 1, 2 and 3..47
Illustration 14: Definition of PICC classes 4, 5 and 6..48
Illustration 15: RF field level against distance to the antenna, for different readers, up to 25 cm 53
Illustration 16: Outprint of a MIFARE Classic promotional card...61
Illustration 17: The PC/SC stack...70
Illustration 18: A minimal C function to list the PC/SC couplers..79
Illustration 19: Basic implementation of SCardGetStatusChange..81
Illustration 20: Flowchart of a PC/SC application with 3 threads...119
Illustration 21: The lighweight "PS/SC Like" architecture proposed by SpringCard for Android. .125
Illustration 22: A Nexus 9 Android Tablet with a Prox'N'Roll PC/SC HSP..126

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 7 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Table index
Table 1: Excerpt of the ISO/IEC 7816-4 of INS values...27
Table 2: Excerpt of the ISO/IEC 7816-4 listing of status words..29
Table 3: Understanding of the protocol level ID for the different standards...................................97
Table 4: List of manufacturer codes (partial)..98
Table 5: ATR of a wired-logic contactless card..102
Table 6: Values for the ATR's PIX.SS byte...103
Table 7: Values for the ATR's PIX.NN word..105
Table 8: ATR of a contactless smartcard..106
Table 9: GET DATA: P1,P2 specific values..107
Table 10: The DESFire GET VERSION command..109
Table 11: PC/SC READ/WRITE instructions for wired-logic cards...113
Table 12: PC/SC implementation of MIFARE Classic security...113
Table 13: Embedded APDU Processor: mapping of ISO/IEC 15693-3 instructions.......................114
Table 14: CCID commands/responses...124

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 8 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

This guide book has been written for SpringCard by Johann Dantant.
Thanks to Laetitia Cochet for her contributions, Claire Maillet for her careful re-reading, and all

the SpringCard R&D team for the technical inputs.

Warning

A few parts of this guide make reference to future documents, features or products, that are not
yet available at the date of writing.

Such items are written in blue and associated to the “coming soon” or “TBD” (to be done) words.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 9 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

1. Introduction

1.1. Overview
This is a guide for system integrators, software designers and developers who are
creating smartcard-aware computer applications, especially applications that
communicates with contactless cards, RFID labels or NFC tags through a SpringCard
coupler.

This document aims to give the reader the basic skills that are required to conceive
and implement a solution involving a smartcard or a contactless card. It contains a
large part related to PC/SC-development, for PC/SC is the most widely-adopted API
to create an application that communicates with a smartcard. Even if your solution
does not involve PC/SC, the concepts will always be the same.

For a more general overview, or to go further into some features not covered by this
handbook, consult the following references:

 Smart Card Programming, Ugo Chirico, Lulu Press Inc, 2014,

 Smart Cards: The Developer’s Toolkit, Timothy M. Jurgensen and Scott B.
Guthery, Pearsons Educations, 2002,

 Les cartes à puce, théorie et mise en oeuvre, Christian Tavernier, Dunod,
2011 (in french),

 RFID and Contactless Smart Card Applications, Dominique Paret, Wiley-
Blackwell, 2005.

1.2. Audience
Readers of this guide are assumed to be familiar with computer application
programming.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 10 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

1.3. Related documents
This guide introduces many concepts, but does not aim to cover all aspects of them.
The following documents are the related reference manuals or applications notes
that should be read together with this guide:

Doc # Title

PMDZ061 PC/SC Simplified documentation of the API

PMD15305 PC/SC Zero-driver – CCID low-level implementation

PMD17182 SpringCard PC/SC couplers – embedded APDU Processor

Coming soon NFC peer-to-peer with SpringCard PC/SC couplers

Coming soon Card and NFC tag emulation with SpringCard PC/SC couplers

Coming soon Advanced control and configuration of SpringCard PC/SC couplers

Also refer to the Getting Started Guide accompanying the product you are using.

 SpringCard publishes updates or new documents frequently. Please verify that
you have always the latest version of every document.

1.4. Product listing
The following SpringCard PC/SC couplers are covered by this document:

H663 Group (USB)

Prox'N'Roll PC/SC HSP Desktop USB PC/SC coupler for contactless/RFID/NFC
smartcards

Prox'N'Roll PC/SC HSP OEM OEM USB PC/SC coupler for contactless/RFID/NFC
smartcards

CSB HSP Multi-interface desktop USB PC/SC coupler
(contactless/RFID/NFC smartcards + contact cards + 1
to 3 SIM/SAM)

CrazyWriter HSP Multi-interface OEM USB PC/SC coupler
(contactless/RFID/NFC smartcards with remote
antenna + contact cards + 1 to 4 SIM/SAM)

TwistyWriter HSP Turnkey OEM USB PC/SC contactless/RFID/NFC
coupler solution (remote antenna + 1 SAM slot)

H663-USB Turnkey OEM USB PC/SC contactless/RFID/NFC
coupler solution

H663 OEM USB PC/SC contactless/RFID/NFC coupler

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 11 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

module (without antenna)

H512 Group (USB)

H512-USB Turnkey OEM USB PC/SC NFC coupler solution

H512 OEM USB PC/SC NFC coupler module (without
antenna)

E663 Group (network)

FunkyGate-IP PC/SC Ready-to-use contactless/RFID/NFC PC/SC over
Ethernet wall coupling device

TwistyWriter-IP PC/SC OEM contactless/RFID/NFC PC/SC over Ethernet
couplers (remote antenna)

K663 Group (serial)

Devices based on the K663 module don't have an actual PC/SC driver, but could be
operated in PC/SC-like mode based on the CCID zero-driver implementation

CSB4.8S Contactless/RFID/NFC desktop coupler, serial
interface

CSB4.8U Contactless/RFID/NFC desktop coupler, USB serial
port emulation

TwistyWriter-TTL or 232 or
485

OEM contactless/RFID/NFC serial interfaced couplers
(remote antenna)

K663-TTL or 232 or 485 OEM contactless/RFID/NFC serial communication
coupler module

CSB6 Group

The CSB6 Group is no longer in production

Prox'N'Roll PC/SC Desktop USB PC/SC coupler for contactless/RFID
smartcards

CSB6 Multi-interface desktop USB PC/SC coupler
(contactless/RFID smartcards + contact cards +
SIM/SAM)

CrazyWriter Multi-interface OEM USB PC/SC coupler
(contactless/RFID smartcards with remote antenna +
2 SIM/SAM)

CrazyWriter OEM USB PC/SC coupler for contactless/RFID/NFC
smartcards (remote antenna)

NFC'Roll Desktop USB PC/SC NFC coupler

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 12 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Please refer to each product’s page on www.springcard.com to download the
relevant datasheet, getting started guide, and associated documents.

 SpringCard introduces new products frequently. Latests products may not
appear on the list, while being also covered by this document.

1.5. Reference documents

1.5.1. International standards

Standard Description

ISO/IEC 7810 Identification cards – Physical characteristics

ISO/IEC 7816-2 Identification cards – Integrated circuit cards
Part 2: Cards with contacts – Dimensions and location of the contacts

ISO/IEC 7816-3 Identification cards – Integrated circuit cards
Part 3: Cards with contacts – Electrical interface and transmission protocols

ISO/IEC 7816-4 Identification cards – Integrated circuit cards
Part 4: Organization, security and commands for interchange

ISO/IEC 7816-5 Identification cards – Integrated circuit cards
Part 5: Registration of application providers

ISO/IEC 7816-6 Identification cards – Integrated circuit cards
Part 6: Interindustry data elements for interchange

ISO/IEC 18000-3 Information technology – Radio frequency identification for item
management
Part 3: Parameters for air interface communications at 13.56 MHz

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 13 / 128

http://www.springcard.com/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

1.5.2. Public specifications

Reference Publisher Title

CCID USB Workgroup Universal Serial Bus
Device Class: Smart Card
Specification for Integrated Circuit(s) Cards Interface Devices
Rev 1.1 – 22/04/2005

Download link:
http://www.usb.org/developers/docs/devclass_docs/DWG_S
mart-Card_CCID_Rev110.pdf

PC/SC PC/SC Workgroup Interoperability Specification for ICCs and Personal Computer
Systems
Revision 2

Download link:
https://www.pcscworkgroup.com/specifications/download/

1.6. Support and updates
Useful related materials (product datasheets, application notes, sample software,
HOWTOs and FAQs…) are available at SpringCard’s website:

www.springcard.com

Updated versions of this document and others are posted on this website as soon as
they are available.

For technical support enquiries, please refer to SpringCard support page:

 www.springcard.com/support

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 14 / 128

https://www.springcard.com/support
https://www.springcard.com/
https://www.pcscworkgroup.com/specifications/download/
http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

1.7. Conventions used in this document

1.7.1. Typographic conventions for numbers

1.7.1.1. Hex notation

All hex numbers are prefixed by a small “h”. Examples:

h9AE4
h0100

1.7.1.2. Binary notation

All binary numbers are prefixed by a small “b”. Examples:

b0001 1001
b01

1.7.1.3. Decimal notation

Numbers without any prefix are decimal. Examples:
16
255

When absolutely required for clarity, decimal numbers are prefixed by a small “d”. Examples:

d16
d255

1.7.2. Object size

The following designations are used when referring to the size of data objects:
 A byte is an 8-bit object,
 A word is a 16-bit object,
 A double-word or dword is a 32-bit object.

1.7.3. Iconography

Icon Description

 Warning: source of frequent errors or confusions

 Useful supplementary information, advice

 External link – Reference to a document or a page available on the web

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 15 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

1.8. Glossary and acronyms
The terms used in this document as generally defined on the first time they are used.
The most common terms are listed below:

APDU Application Protocol Datagram Unit
Refer to a ISO/IEC 7816-4 command (C-APDU) or response (R-APDU)

ATR Answer To Reset

CLA Class
The 1st byte of a ISO/IEC 7816-4 command (C-APDU)

CSN Card Serial Number
(see also UID, RID, PUPI)

INS Instruction
The 2nd byte of a ISO/IEC 7816-4 command (C-APDU)

NFC Near Field Communication

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card

PPS Parameter & Protocol Selection

RFID Radio Frequency IDentification

SW Status Word
The 2 status bytes at the end of a ISO/IEC 7816-4 response (R-APDU)

TPDU Transport Protocol Datagram Unit
Refer to a ISO/IEC 7816-3 or ISO/IEC 14443-4 block

VCD Vicinity Coupling Device

VICC Vicinity Integrated Circuit Card

 A complete glossary is available on SpringCard’s Technical Blog:

 http://tech.springcard.com/glossary/

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 16 / 128

http://tech.springcard.com/glossary/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2. Smartcards and couplers – Concepts and
definitions

2.1. What is a smartcard?
According to Wikipedia, “a smartcard, chip card or integrated circuit card (ICC) is any
pocket-sized card that has embedded integrated circuits”.

 https://en.wikipedia.org/wiki/Smart_card

This is a very open definition, which obviously would cover not only the objects you
would spontaneously name “smartcard”, but also the SD card of your digital camera
or mobile phone, the cartridges of the gaming console you used to play with as a
child, and possibly a flat USB flash drive. Actually, all of these are “pocket-sized cards
that has embedded integrated circuits” as well. But they are no smartcards.

At first, let’s circumscribe the subject to what the engineers and the industry have
standardised under the technical name ‘smartcard’: an IC card, having a standardised
size, featuring a standardised electrical interface, implementing a standardised
protocol, and finally exposing standardised software interfaces.

All these standards are grouped in the ISO/IEC 7816 cluster, entitled “identification
cards – integrated circuit cards”.

From now on, we are leaving Wikipedia’s open definition behind us, and will consider
that a smartcard is an electronic device that obeys to (at least some of) the ISO/IEC
7816 standards.

2.2. What is a smartcard, according to ISO/IEC 7816

2.2.1. Form-factor and electrical interface

ISO/IEC 7816-1 says the form-factor of a smartcard must be ID-1, as defined in ISO
7810, i.e. the “credit card” size we all know (85.60×63.98 mm, 3.37×2.13 in).

A few smaller form-factors have been introduced year after year by mobile phones
manufacturer, and are now widely adopted:

 2FF “mini SIM” for the mobile phone manufacturers (25×15 mm,
0.98×0.59 in) has also been adopted by the smartcard industry for security
coprocessors (SAM) under the name ID-000,

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 17 / 128

https://en.wikipedia.org/wiki/Smart_card

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 3FF “micro SIM” (15×12 mm) and 4FF “nano SIM” (12.30×8.80 mm) are used
only in smartphones.

Illustration 1 below shows the different form-factors.

Illustration 1: Smartcard formats

The card communicates with the external world using a set of physical contacts,
which also provides power and clock (ISO/IEC 7816-2, illustration 2).

Illustration 2: Smartcard contacts

We’ll no go deep into details concerning only the engineers working on the electrical
interface, but there are three facts worth noticing:

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 18 / 128

C5 GND (ground)

C6

C7 I/O (serial line)

C8

VCC (power) C1

RST (reset) C2

CLK (clock) C3

C4

ID-1

ID-000 or 2FF Mini SIM /SAM

3FF Micro SIM

4FF Nano SIM

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 There are 3 power classes. Class A stands for VCC=5 V, class B for VCC=3.3 V
and class C for VCC=1.8 V. A “general purpose” smartcard reader is
responsible for powering the card with increasing voltages, until the card
comes to life. A reader that is designed to always read the same card, or the
same card family, could be optimized to support only a single power class.

 Contacts C4, C6 and C8 were required in the 80’s, because the IC technology
of the time required a higher voltage when programming (erase / write) the
memories than when reading them. These contacts have been deprecated in
the 90’s, but are now gaining new roles: some cards may implement USB on
C4 and C81, and, in some NFC-enabled smartphones, C6 is a direct link
between the SIM card’s chip and the NFC contactless front-end.

 In early generation cards, CLK was the unique clock source for the chip’s
processor. Nowadays, most cards have an internal clock source, yet the CLK
line is still required to clock the serial communication. The reader must
supply a constant clock signal2.

2.2.2. Protocol

ISO/IEC 7816-3 specifies that the card implements an asynchronous serial transport
protocol over the I/O pin; the bitrate is defined as a division of the input clock (CLK).

The smartcard protocol must put an emphasis on the error detection and recovery
schemes, in order to improve the overall reliability of the link, because dirty or even
damaged contacts (either on the card-side or on the reader-side) are the cause of
frequent communication errors.

Actually, there are two protocols:

 T=0 is a character-oriented protocol. Error detection and recovery take place
after every byte (parity bit + acknowledge). This is a legacy of the early-80’s, a
slow protocol, yet usable even in harsh conditions.

 T=1 is a block-oriented protocol. Blocks are 16 to 256 byte-long. It is lots
faster than T=0 in the nominal situation where no communication error ever
occurs, but, on the other hand, the error recovery process takes more time.

Since there is only one single I/O pin shared by both input and output lines, both
protocols are half-duplex. The communication uses a command/response model: the
reader sends down a command, and the card must provide its response in a given
time frame.

The only exception to this half-duplex scheme is the initial power-up and reset
sequence, when the card sends its first message spontaneously. This message is the
card’s Answer to Reset or ATR.

1 You can see this kind of cards as the “combo” between a USB smartcard reader and the smartcard itself.
2 The clock frequency could be selected by the reader between 1 and 5 MHz. SpringCard contact couplers clock the cards at

4 MHz.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 19 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 3 on page 20 summarizes this workflow.

Illustration 3: Principles of card operation:
power-up, ATR, and command/response sequences

The ATR contains all the technical information the reader needs to operate the card:
the protocol(s) the card supports, the maximal bitrate and the expected timings. The
ATR also conveys a few free bytes (max 15), named Historical Bytes, that the
developer of the software running in the card’s microcontroller may use to expose
some information or meta-data.

In a way, the ATR is the fingerprint of the card family. The ATR allows a card-aware
application (running in the host computer) to determine whether a card that has just
been inserted in the reader is (possibly) the one card that the application was
waiting for, or could be ignored.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 20 / 128

Reader’s logic powers up
and resets the card
Card’s micro-controller
boots up

host computer smart-card

card software

‘reader’

card-aware
application

(...)

Card receives commands
from the host, processes
the commands, and
sends its responses

Command

Response

Command

Response

ATR

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Ludovic Rousseau, a smartcard professional and open-source enthusiast, has been
establishing and maintaining for years a list of smartcard ATRs.

The complete list:

http://ludovic.rousseau.free.fr/softwares/pcsc-tools/smartcard_list.txt

He also provides an online tool to decode the ATR’s technical data and query his list
of ATRs:

https://smartcard-atr.appspot.com/

 SpringCard is not connected with and does not sponsor or endorse 3rd party open-source developers.

2.2.3. Software (application) interface

The T=0 and T=1 transport protocols as standardised in ISO/IEC 7816-3 convey (or
“transport”) commands and responses between the card-aware software running in
the host and the software running in the smartcard.

ISO/IEC 7816-4 defines both the grammar and the vocabulary of the commands and
responses exchanged at application level, which are named application protocol
datagram units, or APDU3. The grammar is how the commands and responses are
formatted. The vocabulary is the list of commands that shall/should be supported,
and also the values of the success/error status in the responses.

 To clarify the difference between the transport protocol and the application-level
grammar/vocabulary, let’s have a look on HTTP, the application protocol behind the
world-wide web.

The web browser (HTTP client) expects that the HTTP server answers with a
numerical status code, followed by some text data. This is the grammar. Status code
is defined to 200 for “OK, please display the following text nicely”, and 404 for “Not
found, the following text is an error message”. This is the vocabulary.

The command and the responses are conveyed by an underlying transport protocol,
TCP, that is agnostic about the grammar/vocabulary used at application level.

3 The notion of APDU is not specific to the smartcard field. It has been introduced by network engineers in the early 70’s and
standardised by ISO 7498 “Information Processing – Open Systems Interconnection – Basic Reference Model”, a standard
that most network and system engineers know only as “the OSI model”. In the OSI model, T=0 and T=1 are transport
protocols (4th layer); they convey TPDUs. The applications (7th layer) do exchange APDUs. But in most situations, the
developer of the application would simply say “command / response” instead of “C-APDU / R-APDU”.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 21 / 128

https://smartcard-atr.appspot.com/
http://ludovic.rousseau.free.fr/softwares/pcsc-tools/smartcard_list.txt

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2.2.4. The grammar

2.2.4.1. Commands

ISO/IEC 7816-4 specifies that the Command APDU starts with a 4 byte header.

 1st byte is named class or CLA and is intended to directly route the command
to one of the card’s applications (in case it has more than one), or to control
a secure communication channel. CLA=h00 in most situations.

 2nd byte is named instruction or INS and identifies the command that has to
be executed by the card’s application. Next paragraph “vocabulary” lists the
ISO-defined values for the INS byte.

 3rd and 4th bytes are named parameters or P1, P2. They convey the
parameter(s) to the instruction. It could be a combination of flags or a 16-bit
number (for instance a record number or an offset inside a file), depending
on the instruction.

After the header comes the optional data field. The length of the data is specified by
the LC field (length of command).

There are two kind of APDUs: short APDUs are limited to 254 B of data, with LC on
one byte. Extended APDUs go up to 64 kB of data, with LC on three bytes (constant
value h00 then actual length of 2 bytes)4.

The C-APDU is terminated by an optional LE (length expected). It tells the card how
many bytes the caller is waiting for. Symmetrically, LE could be on 1 or 3 bytes.

Illustration 4: Format of C-APDUs

4 Most smartcards do not support, and do no need to support, the Extended APDUs, because they store and exchange only a
limited volume of data. Extended APDUs have been introduced recently to fulfill the need of e-ID cards (including contactless
passports), where fingerprints, pictures, certificate chains must be read as quickly as possible. A lot of readers still do not
support Extended APDUs at all, or supports them by chaining TPDUs in the driver (that runs in the host computer), and this
is dramatic in terms of speed. SpringCard H663 supports Extended APDUs directly into the reader, but with a limit of 8kB of
data. The next generation of SpringCard readers will implement extended APDUs with no limit.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 22 / 128

CLA INS P1 P2 Case 1 C-APDU : no data in, no data out

CLA INS P1 P2 LC data in Case 3 C-APDU : LC bytes of data in, no data out

CLA INS P1 P2 LE Case 2 C-APDU : no data in, LE bytes of data out expected

CLA INS P1 P2 LC data in LE Case 4 C-APDU : LC bytes of data in, LE bytes of data out expected

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2.2.4.2. Responses

The Response APDU has no header and no length field. It conveys an optional data
field; if this field is present, its length must be consistent with LE. It is terminated by a
two-byte status word: SW1, SW2.

The status word tells whether the instruction has been correctly executed, or not.
Next paragraph “vocabulary” lists the ISO-defined values.

Illustration 5: Format of R-APDUs

2.2.5. The vocabulary

2.2.5.1. Principles

According to ISO/IEC 7816-4, the card organizes its data in files. The files are in turn
organized in directories. Security schemes (authentication, access control and
read/write protection, secure communication) are generally implemented at
directory level. The standard names a directory a dedicated file or DF.

 Managing the security of the card’s content at directory level, and not at the global
card level, implies that an application may store (and protect) its data into a
smartcard’s directory, independently of any other application that will store its data
into an other directory. This is the basis of so-called “multi-application” cards.

In a multi-application card, many service providers (bank, transport network,
physical access control system…) share a single card, each provider having its own
directory in the card.

The complexity of such a scheme lies on the top-level administration of the card:
which of the service providers is responsible (and allowed!) to create (and maybe
delete) the other’s directories?

Most of the time, it is cheaper for every service provider to issue its own card than
to cooperate with numerous partners in a multi-application card. Generally
speaking, such a card also involves sharing sensitive data with competitors or far
subcontractors. The same disincentives are also at work when it comes to emulating
many smartcards by a single NFC mobile phone5.

5 Contactless smartcards, of course. But the principles are exactly the same. And the SIM, that actually hosts the card
applications, is a contact card!

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 23 / 128

SW1SW2 Status Word only, no data out

data out SW1 SW2 Status Word and data out

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Under the directories or dedicated files (DF), there are elementary files (EF).
Smartcard’s EFs are very different from regular computer files.

Firstly, they are not referred to by a file-name, but only by a short number (2 or even
1 byte), because a smartcard is a small, resource constraint, chip.

Secondly, EFs are “smart” files: the instruction to read / write a file does not map
directly to “hey, please access this memory address and get / set this buffer there”,
but is a (possibly complex) set of operations executed by the card’s software. This
allows a few interesting features:

 Record files could be seen as a kind of SQL table. The card’s software
manages the record structure and controls finely the access: depending on
the password or key that has been used for authentication, the granted
access could either be read only, or read + insert, or read + update, etc. The
card’s software generally implements a transaction system with the record
files (more about that in paragraph 2.2.5.2).

 Cyclic files are the same as record files, but when a new record is inserted,
the oldest record is automatically overwritten. This is a must-have to
implement a transaction log efficiently in a size-constraint file-system!

 Value or Counter files are single record-files that store a numeric value. They
are associated to atomic, access-controlled operations (increase, decrease),
all with boundary check.

 Backup files are more like the standard files of your computer, but mirrored
and associated to a powerful anti-tearing mechanism (more about that in
paragraph 2.2.5.3).

 Standard files do exists anyway; they are generally used to store large
amount of data that don’t change in the field.

 Key files and a few other hidden files store the secret keys or passwords, and
all the meta-data used by the card’s software to manage the access rights for
the other files. These files are never readable, and special management
instructions must be used to change their content.

2.2.5.2. Transactions

Some card software feature a transaction system. It isn’t as complicated as a
transactional SQL server, but implements the very same concept: maintaining the
coherence of the data stored in the card.

For example, if the card implements an electronic wallet; the merchant’s terminal
must take the money from the wallet (decrease a value file) and write an event in
the log (insert a record in a cyclic file). Without a transaction system, there’s a risk
that only one of the two operations is performed. But the transaction system

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 24 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

ensures that either both operations are performed at once (commit), or they are
both canceled (rollback).

A secure transaction system is at work in some cards and extends the principle one
step further. It uses cryptographic techniques, generally a CMAC (cryptographic-
message authentication code) computed other all the commands and data involved
in the transaction. The CMAC is computed symmetrically in the smartcard and by the
host’s card-aware application6. The host application sends its commit instruction
together with the CMAC, and the card compares this input with its own; the whole
transaction is canceled if the authentication cryptograms don’t match.

Doing so, even a defrauding software, running in the same host computer as the
genuine card-aware application, will not be able to change the card’s content,
because the forged commands will not fit into the CMAC provided by the genuine
application.

And finally, the card may send back another CMAC in answer, as a proof, for the
back-end system, that the transaction has actually been performed.

2.2.5.3. Anti-tearing

The anti-tearing system is also an important feature to maintain the coherence of
the data. If the card is teared away from the reader, or in the event of power loss,
records or values could be partially erased or partially written, which makes the data
invalid.

To prevent this dramatic situation to occur, some cards feature a dedicated anti-
tearing hardware unit. Basically, it’s a kind of cache memory, associated with a
capacitor to accumulate the energy and a power-supply monitoring system.

At first the data is only written into the cache; then the card’s logic ensures that
there is enough energy in the capacitor to actually write all the data into the
persistent memory (E2PROM or flash) even in case the external power-supply is lost.
If this condition is met, the writing starts – and will eventually succeed. Otherwise,
the existing data remain unaltered.

2.2.5.4. Instructions

Based on this file-system model, ISO/IEC 7816-4 defines about 40 commands.

Table 1 starting next page provides an overview of the most frequently used
commands, with a few explanations.

6 Possibly with the help of a dedicated smartcard, a SAM (secure access module), i.e. a ID-000 sized card whose unique role is
to validate the transaction with the user’s cards, suppressing the need to store the security keys in the host software, which
would make them vulnerable to hacking. Nowadays, SAM cards could be replaced by secure elements, or HSM (hardware
security module). More about that in paragraphs 2.3.1 and 2.3.2.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 25 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Command name INS Usage / Notes

SELECT hA4 The SELECT instruction is the “good at everything” instruction to
navigate in the card’s directory structure and select either
directories or files. It has 3 different flavors, based on the flags in
P1,P2:

• Selection by file identifier is the basic form and uses 2-B IDs
for most situations, or a 1-B short ID if the card supports it
for a few files (to speed up the transaction),

• Selection by path allows both to access a file with an
absolute path, and to navigate among the tree (up one level,
select first/next/previous file at current level, and so on),

• Selection by directory name (or SELECT APPLICATION) gives
the ability to select a directory using either a friendly,
human-readable name, or a long, unique identifier assigned
to the application in an open-loop, inter-operable context7.

READ BINARY
UPDATE BINARY

ERASE BINARY
WRITE BINARY

hB0
hD6

h0E
hD0

These are the 2 basic instructions to read/write into standard (and
backup) files. P1,P2 specifies the offset inside the file.

• For the READ BINARY instruction, LE bytes are returned.
• For the UPDATE BINARY instruction, LC bytes are written (care

must be taken that a few card technologies mandates a
constant values for LC, to match the memory’s internal block
size).

These 2 instructions are a legacy of the old memory technologies,
where the memory cells or block can not be freely “updated”, but
only cleared and programmed again. The ERASE BINARY restore a
portion of the file to the cleared memory state (either all 1s or all 0s
depending on the underlying technology). The WRITE BINARY
performs and exclusive OR or AND to change the value, but in one-
way only.

READ RECORD(S)
UPDATE RECORD
APPEND RECORD

ERASE RECORD
WRITE RECORD

hB2
hDC
hE2

h0C
hD2

Read one or many records from a Record or Cyclic file.
Change the content of an existing record.
Insert a new record. On a Cyclic file, this overwrites the oldest
record.
Restore one or many records to the cleared-memory state.
Perform a logical OR or AND over the previous record value, in one-
way only.

7 Interoperable Application IDentifiers (AIDs) are covered by ISO/IEC 7816-5. Every card solution provider has its own issuer
identification number. All the applications offered by this issuer uses this number as the first bytes of their AIDs. SpringCard’s
issuer identification number is hA000000614.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 26 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Command name INS Usage / Notes

GET CHALLENGE

EXTERNAL
AUTHENTICATE

INTERNAL
AUTHENTICATE

GENERAL
AUTHENTICATE

h84

h82

h88

h86

Generate a random number (challenge or nonce) and prepare the
EXTERNAL AUTHENTICATE.
Sends to the card the response to its challenge, computed using a
secret key (or a password). This allows the card to verify that the
“external world” (i.e. the application using the card) could be trusted
(because it knows the expected secret), and to give read/write
accesses accordingly.
Sends a challenge to the card, and retrieve the card’s response,
computed using a secret key. This allows the “external world” to
verify that the card could be trusted (because it knows the expected
secret).
Alternative instruction for some compound authentication schemes.
Note that ISO/IEC 7816-4 does not specify any cryptographic
primitive for the authentication system, only the instruction to
convey the authentication datagrams. The authentication could
either be based on a symmetrical algorithm (such as AES or DES:
both the card and the application using the card share the same
secret key) or an asymmetrical algorithm (such as RSA or ECC: both
the card and the application have their own secret, private key, and
share only their public key with the other part)

GET DATA
PUT DATA

hCA
hDA

These commands give access to the meta-data of the card, directory
or file.

GET RESPONSE hC0 This command is specific to the T=0 protocol. T=0 does not support
the Case 4 APDUs (command + data in → OK + data out, so it is
implemented as command + data in → OK, then GET RESPONSE →
data out.
Most of today’s smartcard readers work at APDU level, and
therefore perform the GET RESPONSE automatically when required.

Table 1: Excerpt of the ISO/IEC 7816-4 of INS values

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 27 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

It must be clearly stated that none of these commands is mandatory. The ISO
standard says to the developer of the card’s software “your select file instruction
should be INS=hA4”. It does neither say “your select file instruction MUST be...” nor
“you MUST provide a select file instruction”. If the card developer wants to use a
different INS for select file, he is allowed to do so. If the card has a single file and
therefore does not implement the select instruction, this is allowed as well.

Therefore, there’s no general way to “explore” a smartcard or to “read” its content.
Without the card’s specification, without knowing the actual list of instructions (and
their parameters) that the card supports, without knowing the actual list of
directories and files, and how are the data organised in them, there’s nothing one
can do reasonably with a smartcard.

More than that, smartcards are designed to protect their content by security systems
(password protection or cryptographic authentication). If you do not know the key or
the password, you will not access the data, period8.

 Do not start a smartcard project until you have the complete specification of the
smartcard you will be communicating with. Even resist the temptation to quote a
software development effort before gathering all the information you will need to
complete the project.

Complete specification means: the detailed documentation of the card’s instruction-
set, the data model of the application, and the security model, and keys, to access
them. The development team will also need to have tests cards. It is a good practice
to use a different key-set in the test cards than in the final cards.

Unless you are a manufacturer of readers (like SpringCard is), you don’t care of the
card’s hardware and low-level specification9.

Just make sure that the card is supported by the reader at protocol level (ISO/IEC
7816-3 T=0 & T=1, or ISO/IEC 14443-4 “T=CL” for contactless cards), and everything
will be fine.

8 This introductory document could not go into the technical details on how the card protects its content. Only a few words on
the subject: a secure card combines passive security (the memory is not a well ordered matrix, but a complex labyrinth
where the bit-cell are dispatched here and there, so even an attacker with a physical access to the memory will not
understand anything) and a lot of active countermeasures. Of course nothing is invulnerable, and a few old cards have been
defeated by practical attacks, but this remain very rare. Most of the attacks remain purely theoretical, or at least too
expensive to be reproduced out of a few well-equipped university labs.

9 Some cards use an operating system, such as JavaCard. This makes a strong difference for the developer of the application in
the card, of course, but for the developer of the host application, and even for the reader itself, whether the card runs a
code written in Java or in C or in assembler remains undistinguishable (at least until it comes to benchmarking the
transaction speed).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 28 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2.2.5.5. Status Words

It is mandatory for the card to return at least 2 bytes of Status Word (SW1,SW2) after
every command. The first nibble of the Status Word (4 high-order bits of SW1) must
be either 6 (error) or 9 (success). Any other value is a violation of the protocol.

Table 2 below provides a list of the most frequently used commands, with a few
explanations.

SW1 SW2 Meaning

Correct execution

h90 00
h9x xx

Success
Success + vendor specific information

h61 xx T=0 case 4 APDU only: xx bytes of data out are available, the reader shall issue a
GET RESPONSE command with LE=xx

Checking errors

h6C xx LE not supported – repeat the same command with LE=xx

h67 00 Wrong length LC – the C-APDU is malformed

h6E 00 CLA not supported

h68 xx Secure messaging / functions in CLA not supported

h6D 00 INS not supported

h6B 00
h6A xx

Wrong parameter P1, P2

h69 xx Command not allowed

Other errors

h6F 00
h6F xx

Generic error, no precise diagnostic
Vendor specific error code

Table 2: Excerpt of the ISO/IEC 7816-4 listing of status words

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 29 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2.3. Variations around ISO/IEC 7816

2.3.1. SAM and HSM

A secure authentication module (SAM) is a ID-000 sized smartcard that plays only a
single role: store secret keys, and compute cryptograms. As all the other smartcards,
a SAM is carefully designed to protect its secrets against all known attacks (and,
ideally, against most future attacks).

Some transportation networks install a SAM at every gate to authenticate the user’s
(contactless) smartcard very quickly; the gate’s performance is independent from the
latency of the network, and, more than that, the gate keeps working even in the
event when the network is down. Some electronic purse (e-payment) systems also
use a SAM the merchant terminals for the same reasons.

A hardware security module (HSM) is a network appliance that provides the same
features and the same security level as a SAM card, but with a dramatically higher
throughput.

HSMs are typically used to authenticate the secure transactions (i.e. compute a
CMAC, see 2.2.5.2) in large systems. They are also widely used in public key
infrastructures (PKI) or to implement the secure communication layer (TLS, HTTPS) in
performance-critical servers or VPNs.

2.3.2. Secure elements and other “smartcard chips without card”

The last years have seen a fast development of complex, interconnected networks of
high-end technology artifacts, which can not be named “computers” anymore
because they do not have a screen or a keyboard. Most of them don’t even have a
user!

Smart-watches and other wearables, sensors connected to the Internet from your
own or from the streets of the smart-city where you live, counters and actuators of
the smart-grid, the IoT (Internet of Things) is built on top of secure, trusted,
machine-to-machine communication. Even the cheapest node in such a complex,
interconnected system, must have its own secret keys and be tamper-proof;
otherwise, the whole system is vulnerable to data leakage, denial or service attacks,
injection of counterfeit data, and to many other unpleasant interactions.

The smartcard manufacturers have a strong experience in tamper-proof silicons and
secure software designs, which makes them key actors of the IoT market. All they
have to do is offering their smartcard chips in the form of SMD components, evading
the ISO-specified form-factor and contacts.

Such chips are named “secure companion chip”, “trusted platform coprocessor” or
more commonly “secure element”.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 30 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 A good definition of a secure element is: “a smart chip that securely stores and
manage information”.

Since most of them are developed by smartcards vendors and/or designed to
behave the same way as a smartcard, they generally use ISO/IEC 7816-4 as software
interface.

The NXP A70CM is a SMD component, based on a secure
MCU and running a JavaCard OS.
It is compliant with ISO/IEC 7816-4 but uses a custom
version of T=1 on top of a classical I2C bus.
(image NXP)

The NXP AV2 is a secure access module (SAM), offered
either as a ID-000 SIM/SAM smartcard or a SMD chip.
It is compliant with ISO/IEC 7816-4 and uses ISO/IEC 7816-3
T=1 as transport protocol.
(image NXP)

Embedded in the form of a USB stick, they are the basis of strong authentication
tokens.

Gemalto SafeNet is a family of tokens to remotely access a
critical system or a private network. Basically, it is a secure
chip, in the form of a smartcard, or a smartcard with its own
USB reader, and possibly a small LCD as user interface.
(image Gemalto)

The smartphone market is also pushing for secure elements to store sensitive data.
For example, when you pay with Apple Pay or Google Wallet, the payment
application that emulates a credit or debit card runs in a secure element. But the
same secure element may also host a transit network ticket, your company’s access
badge, the key to your hotel room…

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 31 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

In a way, the secure element of a NFC smartphone allows to virtualize many
smartcards; the smartphone’s processor (and the network behind it) uses it through
a classical contact interface, and the external world through a NFC, contactless
interface. This pushes the “multi-application card” concept to a next level!

A smartphone featuring a SE and a
SIM.
(image ST)

2.3.3. Wired-logic, storage only card

A wired-logic, storage only card, frequently called a synchronous card, is nothing
more than a E2PROM memory which is embedded in an ID-1 plastic card, and can be
accessed through physical contacts located at the position defined by ISO/IEC 7816-
2. But since the card does not embed a microcontroller, it does not implement
neither the T=0 or T=1 protocols of ISO/IEC 7816-3, nor the command/response
grammar and vocabulary of ISO/IEC 7816-4.

There are three major kinds of synchronous cards, based on the technology of the
memory chip they use:

 I2C (“S=8”),

 SPI with separated MOSI/MISO lines (3 wires or “S=9”),

 SPI with a shared I/O line (2 wires or “S=10”).

Unfortunately, there are also plenty of proprietary variations, and it has became
almost impossible for a reader to detect what type of card has been inserted,
without being manually instructed of the protocol to use10.

10 To be complete, we must mention ISO/IEC 7816-10 “Electronic signals and answer to reset for synchronous cards” (1999)
that is an effort to ensure interoperability of wired-logic storage cards. Unfortunately, most of them have been designed and
issued before the release of the standard. The largest part of the card on the field today are still not compliant with any
standard.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 32 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Most today’s PC/SC smartcard readers do not support synchronous contact cards11.

Notably, SpringCard products do not (unless they are flashed with a customer-
specific firmware).

2.3.4. Contactless cards

A contactless smartcard is a smartcard that uses inductive coupling to communicate
with its “reader”.

Inductive coupling is the technology behind NFC (Near Field Communication) and
short-range RFID (Radio Frequency Identification) in the 13.56 MHz (HF) radio band.

“Proximity” contactless smartcards are defined by the ISO/IEC 14443 set of
international standards. The ISO/IEC 14443 is divided into 4 layers, the upper layer
(ISO/IEC 14443-4) specifies the contactless transport protocol, sometimes referred
to as “T=CL”. The application layer that comes on top of the contactless protocol is
supposed to be the very same ISO/IEC 7816-4 that comes on top of the T=0 or T=1
transport protocols.

Illustration 6: The contact and contactless
protocol stacks

Contactless smartcards are discussed in detail in chapter 3.1.

11 CT-API (CardTerminal API) is an alternative to PC/SC that focuses on synchronous cards. A few legacy readers are still
available on the market, supporting this API.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 33 / 128

Application layer
ISO/IEC 7816-4 commands and response

Transport layer

T=0
ISO/IEC 7816-3

T=1
ISO/IEC 7816-3

‘T=CL’
ISO/IEC 14443-4

Contact interface
(wires / electrical levels)

Air +
magnetic waves

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

2.3.5. Wired-logic, storage only contactless cards

A lot of contactless cards on the market today are not “smartcards” but wired-logic
memories with an RF interface. The marketing gives them different names: RFID
labels, NFC tags, contactless tickets… but they are all based on the same physical
principle: inductive coupling at 13.56MHz, and are all (more or less) compliant with
either ISO/IEC 14443 standard for proximity cards or ISO/IEC 15693 standard for
vicinity (hand free) cards.

Wired-logic, storage only contactless cards are discussed in detail in chapter 3.2.

2.4. The coupling device or coupler
Now that we know that a smartcard is a basically a (secure) microcontroller
communicating with the external world through a (sort of) serial line, we must find a
better name than “reader” for the device that ensures the connectivity and gives
access to the smartcard instructions.

Even if the term smartcard reader has been popularized by the PC/SC and CCID
specifications, it does not reflect the technical reality, because a card’s instruction set
opens lots more feature than just “reading” some data.

“Reading” a smartcard makes not more sense than “reading” a remote web server,
or “reading” a SQL database; you do not “read” a raw memory; your application
sends some commands to get authenticated, sends other commands to explore a file
system, sends commands to insert / update / delete the data… and read it, of course,
but not only.

Therefore, the device in which the smartcard is inserted plays the role of a pass-
through gateway between a software running in the host computer (or host
terminal) and the software running inside the card’s microcontroller.

This pass-through gateway translates commands coming from the host application
through either USB, Serial, Ethernet, or any other computer interconnection
technology, into electrical signals that are compliant with the asynchronous, half-
duplex serial T=0 or T=1 transport protocol. But this gateway does not add any
processing logic; its position is to couple the smartcard with the computer.

As a consequence, the standard name, as defined by ISO/IEC 7816, is coupling device
(CD) or simply coupler.

Contactless couplers are in turn named proximity coupling device (PCD) by ISO/IEC
14443 or vicinity coupling device (VCD) by ISO/IEC 15693.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 34 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3. Contactless cards, RFID, NFC – concepts and
standards

3.1. ‘Proximity’ contactless smartcards

3.1.1. Basics

A contactless smartcard is a smartcard that uses inductive coupling to communicate
with its coupler. Inductive coupling is the principle behind electric transformers: a
primary coil is powered by a AC voltage and creates a magnetic field. The magnetic
field induces a current in the secondary coil.

In the case of contactless cards, the primary coil is driven by a sinusoidal voltage at
13.56 MHz, and hence creates a magnetic field with a 13.56 MHz carrier frequency
(HF radio band). This magnetic field is not constrained in a confined volume, as it
would be the case in an actual transformer. Instead, the field floods virtually freely
within a part of the open air, limited only by the directivity of the coil and the (fast)
decrease of the magnetic waves.

This coil and its driving circuit, forming the primary of a virtual transformer, is named
the Proximity Coupling Device (PCD).

When a (mobile) secondary coil is moved into the part of the space where the PCD’s
field floods – say, comes in proximity to the primary circuit (illustration 7) – the
transformer, once virtual, now becomes real. The flow of the magnetic field through
the secondary coil provides electrical power to a secondary, passive, circuit.

As you may have guessed, this mobile part of the transformer, made of a coil and of
an electronic circuit (or a chip) is the Proximity Integrated Circuit Card (PICC).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 35 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 7: PCD → PICC remote power principle

The magnetic field emitted by the coupler not only provides a power supply to the
card, but is also suitable to convey data in both directions (illustration 8):

 The coupler modulates its carrier to transmit information to the card;

 The card uses load-modulation to answer.

 Load-modulation means that the card is able to vary its impedance, i.e. the load it
represents for the electrical circuits.

According to Ohm’s low, under a fixed voltage, any variation of the impedance
causes a variation in the current. And, as this is the case for any transformer, a
variation of the current in the secondary circuit is also noticeable from the primary
circuit – this is how the PCD “sees” the PICC’s answer.

Illustration 8: How the card and the coupler communicates

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 36 / 128

PCD
Proximity Coupler

PICC
Contactless cardEnergy

Data PCD→PICC (modulation of carrier)

Data PICC→PCD (load modulation)

PCD
Proximity Coupler

PICC
Contactless card

Magnetic waves
(13.56MHz carrier)

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

This principle of operation could be summarized as being near-field, passive RFID:

 For electromagnetic scientists, near field is the part of the space where the
distance to the emitter’s antenna is lots smaller than the wave-length, which
is always the case with magnetic waves12,

 Passive RFID, because the contactless card does not have an emitter. The card
is only allowed to alter the incoming wave, using load-modulation13.

 A 125 kHz or 135 kHz reader/transponder system is in the same near-field, passive
RFID family.

The key difference is the frequency band (LF vs HF) which lead to faster bitrates for
13.56 MHz systems: 106 kbit/s to 848 kbit/s (ISO/IEC 14443) vs 2 to 15 kbit/s at
125/135 kHz.

3.1.2. The standards for proximity cards

The standard for proximity cards and couplers (PICCs and PCDs) is ISO/IEC 14443,
which is divided into 4 layers:

 ISO/IEC 14443-1 covers the physical aspects (most of them are detailed in
paragraph 3.3.3).

 ISO/IEC 14443-2 defines the field level and bit-level modulation.

 ISO/IEC 14443-3 tells how the bits are assembled in bytes and then in frames.
There are two options: ISO/IEC 14443 type A uses On/Off Keying modulation
(OOK) and Manchester coding, ISO/IEC 14443 type B uses a 10% Amplitude
Shift Keying modulation (ASK) and NRZ-L coding14. The coupler (PCD) shall
implement both types, but the card (PICC) may choose to implement only
one of them15.

 ISO/IEC 14443-4 tops both types with a block-oriented transport protocol,
not far from the T=1 protocol of ISO/IEC 7816-3. This protocol is often
referred to as “T=CL”, short for Transport = Contact-Less, although this name
does not appear officially in the standards.

12 At 13.56 MHz, the wave-length is 22m. That gives a limit near field/far field > 3m. Due to EMC rules, at this distance, the
magnetic field is already too low to be used.

13 Passive means that the card does not emit radio wave (only the PCD is active). But this does not prevent a card from having
its own power supply. Typically, a mobile phone running in card emulation mode remains a passive device, even if it would
have been unable to achieve a transaction without the battery to power its CPU and SIM card.

14 ISO/IEC 14443-A comes from the work of Philips Semiconductor (NXP) under the MIFARE brand name; the history is roughly
summarized in 3.6.1. ISO/IEC 14443-B is a fork of the Innovatron radio protocol, developed by Roland Moreno / RATP / SNCF
for the public transport market (Paris’ NAVIGO card).

15 And this is actually the case in 100% of the ‘true’ PICC. Only NFC objects running in card emulation mode, such as some
mobile phones, are likely to implement both types in PICC mode.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 37 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Vicinity cards, and the difference between Proximity and Vicinity, are the subject of
paragraph 3.4.

3.1.3. Polling

In a contact coupler, a physical switch tells the coupler when a card has been
inserted into position and is ready for operation (at least may be ready – it could be a
dumb plastic card, or it could have been inserted upside down…). But a contactless
coupler has no equivalent way to be notified when a card arrives or leaves. There is
no choice for the contactless coupler but to broadcast repeatedly a message like “is
there someone here?”, in the hope that a card would be near enough to answer.

A PCD supporting both types A & B of ISO/IEC 14443 broadcasts REQA (Request A) or
WUPA (WakeUp A) and waits for a few milliseconds, in the hope that a type A card
may answer in the opened time-window. If there is no answer, the PCD broadcasts
REQB (Request B) or WUPB (WakeUp B), and opens another time-window. If there is
still no answer, the PCD tries again with type A, and so on.

This endless process is called the coupler’s polling loop. In a multi-technology
coupler, other protocols (ISO/IEC 15693, FeliCa, proprietary...) may also be part of
the loop.

When a card is in position for communication, the card answers to either
REQA/WUPA or REQB/WUPB by ATQA (Answer To Query A) or ATQB (Answer To
Query B) during the time-window opened by the coupler. The coupler then reports
the presence of the card to the host computer, and an application running in the
host computer may start using the card.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 38 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.1.4. Anticollision

Now let’s consider the case of two or more contactless cards entering the PCD’s RF
field in the same time.

If all the cards use different protocols, the coupler “sees” one answer to every
request frame. But if at least two cards use the same protocol, their answers collide
in the same time-window. The coupler is then unable to discriminate among the two
answers. The PCD must then run a collision-resolution algorithm – the anticollision
loop – to enumerate all the cards.

ISO/IEC 14443 type A features a deterministic anticollision method, which means that
all cards could be enumerated in a deterministic, reliable sequence.

ISO/IEC 14443 type B features a probabilistic anticollision method, where the cards
generate random numbers to answer in random time-slots. This method is globally
slower, and can not guarantee that all cards will eventually be enumerated.

3.1.5. Single card approach

But is it really interesting for a PCD to enumerate all the nearby PICCs? In most real-
world applications, the answer is simply no.

Of course, when the PCD is part on a warehouse inventory system, or when there is
by design a high probability of collisions (this is for instance the case for electronic
passports with added electronic visa labels), there is no choice but to enumerate all
the PICCs present, and let the top-level application decide the one(s) it wants to
process.

On the other hand, a point of sale terminal (POS) must be able to know precisely
who is willing to pay for a service or a good. If you put in front of the POS’ coupler a
wallet containing two debit or credit cards, the POS has no way to decide which one
should be charged. Therefore, the POS cancels the transaction and prompts you to
place one card, and only one, in front of its antenna. Therefore, the POS coupler
does not have to implement any kind of anticollision – all it has to do is reporting
that a collision has occurred.

And the same applies for a PC/SC contactless coupler. PC/SC has been primarily
designed for contact smartcards. There is no chance that two smartcards could ever
be introduced – and powered – in a single contact slot. Therefore, the PC/SC
infrastructure relies on the paradigm “one coupler = one card”.

A PC/SC-compliant PCD may know that there are two (or more) cards there, but the
PC/SC middleware and the host applications ‘sees’ only one card at once.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 39 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.1.6. Transport and application protocols

3.1.6.1. Full ISO stack

From the point of view of a software developer, contactless smartcards are, like their
contact counterpart, nothing more than a microcontroller exposing its services
through a command/response scheme.

ISO/IEC 14443-4 “T=CL” makes no assumption on the format of commands and
responses that could be exchanged by the top-level application (see
paragraph 2.3.4). Anyway, keeping in touch with the well-established standards, even
at application level, is always better for interoperability.

Therefore, virtually all high-end contactless smartcards use ISO/IEC 7816-4 APDUs at
application level. This is specially true for payment, eID, public transport cards, and
more, where the same card software could run indifferently in a contact or a
contactless smartcards.

In most situations, the developer of the application does not even have to care
whether the card and the coupler use T=CL, T=0 or T=1 to communicate together –
he just sends ISO/IEC 7816-4 commands and process ISO/IEC 7816-4 responses, with
a complete abstraction of the underlying protocol.

3.1.6.2. Vendor-specific command sets

There’s also a market for lower-end contactless smartcards that use a proprietary
command/response set on top of T=CL.

The motivation could be either the price of the chip – a proprietary command set
may be chosen to have the smallest memory footprint – or the legacy of an earlier
technology, or both.

An example of the legacy of an earlier technology is NXP MIFARE Plus, a modern card
with a microcontroller core and a high security level (based on AES). The card has
been introduced in 2009 to supersede the popular MIFARE Classic wired-logic card
(dated 1994)16. Since the new card aims to replace a previous one, it must be easy
for the implementers to take the move while preserving most of his existing
applications and products.

Therefore, the new MIFARE Plus chip uses a proprietary function set that is derived
in straight line from the one of the MIFARE Classic chip, the novelty being limited to
the use of T=CL blocks (ISO/IEC 14443-4) to convey the commands/responses,
instead of relying on ‘raw’ ISO/IEC 14443-3 frames as earlier.

Between the two ends, NXP DESFire is the example of a contactless smartcard born
with a proprietary command set only (2002, FW version 0.4) that has quickly evolved
to convey the proprietary commands embedded into ISO/IEC 7816-4 compliant

16 The MIFARE Classic has been deprecated following the disclosure of numerous practical attacks against its security scheme.
More about than in paragraph 3.6.1.2.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 40 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

messages (DESFire EV0, 2004, FW version 0.6) before eventually plunging into the
ISO/IEC 7816-4 command set (DESFire EV1, 2008), at least partially17.

3.1.7. Contactless smartcards and PC/SC

The ISO/IEC 14443-4 “T=CL” protocol is very close to the T=1 contact protocol, so the
contactless smartcards are operated as if they were T=1 cards. It makes no difference
from the application’s point of view.

In PC/SC, the card must also have an ATR. The PC/SC standard therefore specifies
how the contactless coupler build a virtual ATR from the contactless card’s ISO/IEC
14443-4 meta-data. This is detailed in paragraph 6.4.1.

3.1.8. Contactless only, dual, two-chip cards

Most contactless cards are ‘contactless only’, meaning that the chip’s only interface is
its antenna and a RF ‘modem’. Some cards feature both contact and contactless
interfaces.

This is typically the case of corporate badges: on the one hand, the access-control
readers at the entrance of the building or rooms use the card’s contactless interface.
A private e-purse may also be handled this way by the ATMs or at the company’s
restaurant. On the other hand, the IT-related services – session opening on the
desktop or laptop, encryption of the hard disks, single-sign-on (SSO) on the Intranet
or corporate applications, digital signature – use the card through its contact
interface.

Most credit or debit cards delivered today by the banking industry also feature two
interfaces: contactless payment is enabled for low amounts and does not require the
user’s PIN; for larger amounts, the card (or the terminal) enforces contact operation
and PIN entry.

But there’s a slight difference here: in the case of a credit or a debit card, a single
chip provides the same service (payment) through the two interfaces. In the case of
the corporate badge, there is no evidence that the contactless world (access control,
e-purse) and the contact world (IT) have any data to share.

More than that, opening security-sensitive corporate processes (like digital signature
or SSO), through a contactless interface, could be seen as a potential security breach.
As a consequence, a lot of contact+contactless cards are not actually based on dual-
access chips, but embed two chips (one for contact, one for contactless) that have
nothing in common.

17 DESFire EV1 provides ISO/IEC 7816-4 commands to handle the data (SELECT, READ, UPDATE) but not much more. Formatting
the card or using efficiently its various security features implies going back to the proprietary command set. The new DESFire
EV2 (2016) goes one step further with new ISO/IEC 7816-4 commands added.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 41 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 9: A first-generation's dual-access card, featuring a copper
coil welded behind the ISO/IEC 7816 module

3.2. Wired-logic proximity contactless cards
As this is the case in the contact world with synchronous cards, there are plenty of
contactless cards that does not embed a processor. They could be seen as a raw
memory storage, with some kind of digital-logic (or an ASIC) exposing a very limited
set of functions to read / write data, and maybe to offer basic security features.

3.2.1. Support of wired-logic cards by standard PCDs

In the world of contact cards, the standards have appeared (long) after most
synchronous cards have been designed – and released.

But in the world of contactless cards and RFID, the ISO/IEC 14443 standard has been
written early in the process, and is, by design, very close to the proprietary system
that was leader of the market at the time (MIFARE)18.

As a consequence, most wired-logic contactless cards available today rely on ISO/IEC
14443-3 (or at least ISO/IEC 14443-2), and it’s not a challenge for a PCD that is
compliant with the standard to support them as well.

 There are 2 noticeable exceptions: 2 companies that had already developed their
own contactless protocols before the adoption of ISO/IEC 14443 in 2001, and that
didn’t take the move to the standard protocol since then.

The 1st of them is Sony; the Sony FeliCa family of cards is still using a Japanese
protocol (JIS X 6319-4) that has been declined by the ISO/IEC 14443 committee. But
Sony has managed to push this protocol into NFCIP-1 (ISO/IEC 18092) in 2003, and

18 For more information regarding the MIFARE family, read 3.6.1.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 42 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

to have the FeliCa cards adopted by NFC Forum as Type 3 Tags. Therefore, this
protocol is now supported by most mainstream couplers, at least partially.

The 2nd is LEGIC. The LEGIC Prime is a family of cards that rely on a proprietary,
undisclosed protocol. But at last, the new generation of cards (LEGIC Advant) is
going full ISO.

SpringCard contactless couplers support a large number of wired-logic chips.
Anyway, some hardware are (by design) unable to support some of them, and old
firmware versions may provide only a small part of the features offered by an up-to-
date firmware. Always refer to each product’s datasheet to know for sure which
technologies are actually supported by the device you intend to use.

3.2.2. Support of wired-logic contactless cards under PC/SC

The PC/SC standard specifies 4 commands, taken from the ISO/IEC 7816-4 standard,
to work with wired-logic contactless cards.

These commands are not forwarded to the card, since a wired-logic card would not
support them. They are processed, or interpreted, by the coupler’s microcontroller,
that is responsible for translating them into the equivalent commands in the card’s
specific function set and protocol.

The 4 commands are:

 GET DATA (INS=hCA) is used to retrieve the card’s protocol-level identifier
(UID/PUPI/serial number/random ID),

 READ BINARY (INS=hB0) to read a data block,

 UPDATE BINARY (INS=hD6) to write a data block,

 GENERAL AUTHENTICATE (INS=h86) to get authenticated onto the card, if the
authentication algorithm and keys are implemented in the coupler itself, not
in the host application. This is only the case for the CRYPTO1 algorithm of
MIFARE Classic19.

These commands, and the other commands exposed by the embedded APDU
Processor, are documented in paragraph 6.6.

In PC/SC every card must also have an ATR. The PC/SC standard therefore specifies
how the contactless coupler build a virtual ATR from the wired-logic contactless
cards protocol information. The ATR’s historical bytes exposes the card’s technical
data (active protocol, card family). This is detailed in paragraph 6.4.1.

19 CRYPTO1 is a proprietary algorithm that is embedded only in NXP reader chips (and cards, of course). Therefore the host
application is not able to implement the authentication itself, as it would be the case for other card technologies, and must
rely on the reader’s internal logic to do the job, hence the GENERAL AUTHENTICATE instruction.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 43 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.3. Operating distance: size matters

3.3.1. Decrease of the RF field with the distance to the PCD

Illustration 10 shows how the RF field decreases with the distance to the coupler’s
antenna, for different antenna radius, with the same RF field level at the origin.
Spoiler: the smaller the antenna, the faster the decrease.

Illustration 10: RF field level against distance to the antenna, with the same H0, for
different diameters

In this illustration, the field level at the center (H0) of the antenna is fixed (2.5A/m)
whatever the diameter, and the field level is evaluated along the axis. This is not a
practical situation, because there’s also are two strong links between H0 and
diameter of the antenna.

The first link is purely technical: the H0 is a function of the current in the antenna’s
coil:

H0=
N I
Ø

where N is the number of loops of the coil, and I the current in the coil, and Ø its
diameter.

For a given reader architecture, I is limited to the capabilities of the antenna driver
IC. Therefore, it is not possible to increase I freely, and, as a consequence, a larger
diameter Ø leads to a smaller field level at the center (H0).

The second link is related to the electromagnetic compatibility (EMC) mandatory
limits20. It is forbidden by law to exceed a certain field level. The measure is taken at
10 m of the antenna.

20 Europe: ETSI 300-330 / US: FCC 47 part 45.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 44 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

As a consequence, an antenna with a “flat” field curve (Ø = 50 cm in illustration 10)
must have a very small H0, to stay in the allowed limits.

Illustration 11 shows the RF field curves for “practical” HF readers.

Illustration 11: RF field level against distance to the antenna, for different actual
readers

3.3.2. Field level required by the PICC

Of course, a PICC needs a decent RF level to receive enough energy to be powered.
The RF level is measured in amperes per meter (A/m); ISO/IEC 14443-2 states that
the PICC shall be able to operate at 1.5 A/m. Most PICCs are even able to operate at
weakest field levels, but no assumption should be made in general case. This is the
first limiting factor in a PCD/PICC system.

The 1.5 A/m limit is shown in gray on illustrations 10 and 11.

This gives a basic estimation of the operating range of a given contactless reader: the
reader associated to the purple curve in illustration 11 (Ø = 7.5 cm, H0 = 3.5 A/m) will
provide enough power to all standard-compliant PICCs up to 3 cm. Most today’s
wired-logic PICCs are able to work on a field as low as 0.5A/m, increasing the actual
range up to 6 cm with the same device.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 45 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 12: The SpringField Florida is a small testing tool, based on a NXP NTAG chip,
that shows how far the RF field is strong enough to power a contactless card.

3.3.3. Size of the PICC

The size of the PICC is a second limiting factor. As this is the case with any electrical
transformer, the coupling ratio is directly tied to the relative size of both antennas.
When both antennas have exactly the same size, the flow of the RF field could be
maximized. But when one of the antennas is lots smaller than the other, there’s a
chance that the coupling factor between both circuits becomes two weak for proper
operation.

To promote interoperability, ISO/IEC 14443-1 defines 6 classes of contactless
antennas, depicted in illustrations 13 and 14. The standard strongly advices that all
PICCs conform to one of these classes. It also states that the PICC’s antenna shall in
no case exceed 86×54 mm.

…/…

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 46 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

In the illustrations below and continuing next page, the dashed line shows the size of
a ID-1 card (drawings are not to scale). The antenna must fit totally inside the
colored areas.

Class 1
The antenna occupies the ID-1 surface at best.

Class 2
The spare area on the bottom is where a credit

card is embossed.

Class 3
These 2 formats are very frequent for inlays or contactless stickers.

An inlay is a contactless chip glued on a very thin plastic film. The antenna is printed onto the
plastic with conductive inks. Most today’s low cost contactless-only cards are manufactured by

embedding a Class 3 inlay between two pieces of white plastic.

Illustration 13: Definition of PICC classes 1, 2 and 3

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 47 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Class 4
2 smaller formats widely adopted by NFC Tags.

Class 5
These 2 formats are also now very frequent for inlays embedded in NFC Tags, wristbands or

watches.

Class 6
These smallest formats are very interesting to “tag” small objects in RFID applications.

Illustration 14: Definition of PICC classes 4, 5 and 6

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 48 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.3.4. Which classes a coupler has to support?

According to ISO/IEC 14443-1, only the support of Classes 1, 2 and 3 is mandatory
for all contactless couplers (PCDs).

All out-of-shell SpringCard contactless couplers support classes 1 to 521.

Last generation couplers do also support class 6 with a decent operating distance (at
least 1.5 to 2 cm). Customers shall be aware that couplers of earlier generations may
be unable to operate class 6 cards at more than 0.5 cm – which may be considered
as too short for a satisfying user experience.

 The standard does not claims that a PICC outside of the 6 classes should not or
could not be supported, but the operation of a compliant PCD could only be
guaranteed with PICCs belonging to one of the 6 classes.

3.3.5. Actual operating distance

“What is the operating distance of this coupler” is the most frequent question ever
heard by a manufacturer of contactless couplers.

And it is also the question one couldn’t answer, because the answers comes not only
from the coupler, but also from a lot of parameters coming the card itself:

 The size of its antenna, of course,

 How much power it requires from the RF field,

 How its RF circuit (antenna + matching capacitor) has been designed.

As a rule of thumb, you may consider that with a decently manufacturer wired-logic
class 1 card, the maximum operating distance is something between 150 and 200%
of the diameter (or diagonal) of the coupler’s antenna22.

A contactless smartcard having the same format, but with a microcontroller that
requires a little more power than the memory-only chip, will behave correctly only
up to 125 or 150% of the diameter (or diagonal) of the coupler’s antenna, at least at
slow speed (106 kbit/s). At a higher speed, the chip requires more power, and the
signal over noise ration is decreased, so the operating distance decreases when the
bitrate increases.

It may be noticed that performances are generally a little better or at least more
repeatable in ISO/IEC 14443-A than in ISO/IEC 14443-B, due to a more robust
modulation scheme.

21 Some customer-specific products have been especially created to support very small tags (smaller than class 6) and are by
design unable to power cards that are larger than class 6. But this devices are not made available to other customers.

22 This is a little more than we have announced at first in 3.3.1, because most wired-logic cards may start running on a field as
low as 0.8 A/m (instead of the 1.5 A/m limit considered in first approach).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 49 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Most SpringCard OEM couplers are provided with a 69×45 mm antenna board. The
antenna is balanced and its active diagonal is approx. 65 mm long.

In optimal conditions, this antenna is able to operate a Class 1 MIFARE Classic card
(genuine NXP chip, high-end card manufacturer) up to 12 or 13 cm.

 The Prox'N'Drive is typically placed behind a windscreen.

Since glass has a different magnetic permittivity than air, the Prox’N’Drive’s antenna
has a very different tuning than other couplers’.

Symetrically, the antenna of a card or tag will be detuned if you place it on a
windscreen or a glass bottle; if the card is not to be used “in free air”, it must be
chosen or designed accordingly.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 50 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.4. ‘Vicinity’ contactless cards

3.4.1. The need for hand free systems

While the ISO/IEC 14443 standard covering proximity cards in the HF band was
discussed in the early 2000’s, companies interested in hand free access were
simultaneously working in a so-called vicinity standard.

There are many use cases for such a system: ski passes in the winter resorts,
wearable tags (bracelets, rings) for user identification in the leisure or gaming
industries, tagging books in libraries to implement both inventory and anti-theft
solutions, and more.

We have introduced in 3.1.1 the proximity coupler and the proximity card as the two
circuits of a mobile, unconstrained transformer.

Proximity means the secondary coil remains close to the primary coil23. This location
ensures a descent coupling between both coils. The chip in the card receives enough
energy to perform demanding computational operations, and high-speed
modulation schemes could be used. There are only little concerns regarding the
signal/noise ratio and EMC compliance.

On the other hand, vicinity means that the two coils are farther. This has two
consequences:

 since the field decreases very quickly with the distance, the card receives lots
less power; increasing the coupler’s RF power is not an option since it would
overrule EMC limitations,

 due to the worse coupling, card’s load-modulation is likely to fell down under
the signal/noise ratio of the receiver.

The only viable approach is:

1. Choose a chip that requires less power, i.e. that implements less features and
communicates slowly. Also a robust modulation scheme is required to ease
the receiver’s job,

2. Increase the size of the coupler’s antenna, so the part of the space where the
RF field floods could be significantly larger, hence allowing a wider operating
volume with the same nominal RF level.

As you may have seen in ski resorts, swimming pools or leisure centers, the couplers
used for hand free access are definitively larger than the PCDs used with contactless
smartcards!

23 The distance matters will be discussed in 3.5

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 51 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.4.2. The standards

The result of this effort on hand free systems is the ISO/IEC 15693 standard,
introducing the concept of vicinity integrated circuit card (VICC) and of course
vicinity coupling device (VCD).

3.4.2.1. Size

As it is the case for ISO/IEC 14443-1, ISO/IEC 15693-1 states that the VICC’s antenna
shall in no case exceed 86×54 mm. There is no other explicit size constraint or even
advice for VICCs. Anyway, the VCD test bench uses only ID-1 VICCs, and that implies
that the behavior with a VICC smaller or bigger than ID-1 could not be tested using
the standard test tools.

3.4.2.2. Field level

The field level is defined in ISO/IEC 15693-2. The VICC must be able to operate on a
field as low as 0.15 A/m.

Let’s go back to illustration 11 on page 45: we have written then that PCB
corresponding to the purple curve (Ø = 7.5 cm, H0 = 3.5 A/m) was able to power all
PICCs up to 3 cm and most of them up to 6 cm.

The very same device, in VCD mode, will be able to power all VICCs up to 10 cm.

 A coupler could be designed to communicate both with proximity and vicinity cards.
Using the standards’ wording, it is both a PCD and VCD.

Due to EMC limitations, such a coupler must have the (small) size of a PCD, overwise
it would not be allowed to implement the proximity modulation. Therefore, its
typical operating range is not really longer in VCD mode than it is in PCD mode.

A larger reader (green curve, Ø = 10 cm, H0 = 2.5 A/m or blue curve, Ø = 50 cm, H0 =
1.5 A/m) is required for actual hand free mode (illustration 11 and 15).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 52 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 15: RF field level against distance to the antenna, for different readers, up to 25 cm

3.4.2.3. Communication protocol

The field level and bit-level modulation are defined in ISO/IEC 15693-2. The very
same 13.56 MHz carrier as defined in ISO/IEC 14443-2 is used, and the field level
ranges allowed by both standards overlap for a wide part.

There are a few strong differences with the proximity standard:

 The VCD is responsible for choosing the communication bitrates and options
in both direction, in order to meet the local EMC limitations (FCC 47 part 15
in the US, ETSI 300-330 in Europe), depending on the size of its antenna and
the nominal RF power it provides,

 For VCD to VICC communication, a 30% Amplitude Shift Keying modulation
(ASK) is used (instead of OOK or 10% ASK for proximity),

 The available bitrates for VCD → VICC are 26.5 kbit/s for small couplers
where the card remains at a short distance (when the VCD is also a PCD,
basically) and 1.6 kbit/s for the larger couplers actually implementing the
hand free mode,

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 53 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 The available bitrates for VICC → VCD are 26.5 kit/s (short distance) and
6.6 kbit/s (hand free). The VCD may choose between two different load-
modulation schemes, depending on its technology and expected signal/noise
ratio of the surroundings.

3.4.2.4. Application-level protocol

The stack is topped by ISO/IEC 15693-3 that defines the VICC as a direct-access
memory, divided into blocks, making it very close to a wired-logic proximity card.

This layer of the standard introduces the following concepts:

 Every card is identified by a unique serial number, the UID. Every card
manufacturer has its own Manufacturer ID, and is responsible of the unicity
of the UIDs attributed under this Manufacturer ID (see 6.3.2),

 The card is basically an unsecure storage. Securing the access – and maybe
the communication – is possible only through proprietary commands (some
cards may be password-protected, some other may feature a more advanced
authentication scheme based on cryptographic functions),

 The memory is divided into blocks of fixed size – but every manufacturer
chooses freely the size of its blocs (a lots of cards available on the market
today have 4-B blocks, some others are 1-B or 2-B only, some 8-B or 16-B,
and there’s no reason not to see larger blocks in the future),

 The memory is read and written at block-level. Optional functions make it
possible to read/write more than one block at once (but never less),

 The card may provide a lock mechanism to turn every block permanently
read-only – given the lack of mandated security, this is the minimum feature
to be sure that the data could not be modified after writing.

 There is no provision in the standard to implement smartcard features (APDUs and
file-system) on top of the ISO/IEC 15693 stack, because running a card
microcontroller, even very small, on the weak RF field of a VCD located 1.5m away, is
not possible with today’s technology (or at least not possible at an acceptable cost).

But the technology evolves constantly, and so do the standards.

3.4.3. Vicinity contactless cards vs RFID HF tags or labels

The ISO smartcard workgroup is responsible for all the standards discussed until
then. There are many other workgroups at ISO’s. One of them is in charge of RFID,
radio-frequency identification.

The RFID workgroup is driven by key actors of logistics, warehouse and retails. They
focus on open-loop database-centric systems, in which the RFID chip is no more than

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 54 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

the pointer to a record in a database. Storing a large amount of data or
implementing complex cryptographic features in the chip is totally out of their scope.
Basically, their first need is a (very) cheap technology, because they will use billions
of disposable tags. Also, a fast and reliable anticollision scheme is a must have, to be
able to read dozens of tags at the same time.

The result of their work is the ISO/IEC 18000 family of standards; every radio-
frequency band that could potentially be used for RFID applications is covered by its
own entry in the family. This includes for instance ISO/IEC 18000-2 for the LF ISM
band (125/135 kHz) and ISO/IEC 18000-6 for the UHF ISM band (860/960 MHz).

Closer to our focus, ISO/IEC 18000-3 covers the HF ISM band, i.e. the 13.56 MHz
frequency. This standard is itself divided in three modes that are not interoperable24:

 Mode 1 (ISO/IEC 18000-3M1) is very close to ISO/IEC 15693. A VICC
compliant with ISO/IEC 15693 may be used together with a ISO/IEC 18000-
3M1 interrogator,

 Mode 2 (ISO/IEC 18000-3M2) uses phase-jitter modulation (PJM) for the
coupler-to-tag channel, which is very different from the ASK or OOK
modulations used by the other HF standards,

 Mode 3 (ISO/IEC 18000-3M3) is the ISO transcription of the GS1 EPC HF RFID
Air Interface. GS1 is the child organization born from EAN (Europe Article
Numbering) and UCC (Uniform Code Council), the organizations behind the
standards for barcodes. The aim of GS1 is to replace barcodes by electronic
product codes (EPC). The ISO/IEC 18000-3M3 protocol has been designed by
GS1 to offer the best anticollision speed25.

 SpringCard couplers that are ISO/IEC 15693 VCD could be used with ISO/IEC 18000-
3 Mode 1 tags.

Mode 3 tags will be supported by future products (UID reading only).

There is no plan to support Mode 2 tags.

24 This means that a given system shall implement only 1 of the 3 modes, and that a system running another mode will cause
significant interferences.

25 A high-end dedicated RFID reader is likely to identify up to 700 tags per second using ISO/IEC 18000-3M3, against up to 60
tags per second using ISO/IEC 18000-3M1.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 55 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.5. NFC Tags
NFC Forum Tags are not a new technology, but a way of using contactless cards to
exchange in open-loop, mass-market applications.

3.5.1. NFC and the NFC Forum

In 2003, Philips (the provider of the MIFARE cards, NXP being in the past the Philips
Semiconductors division) and Sony (the provider of the FeliCa cards) introduced a
new concept of short range wireless network, using inductive coupling (i.e. near field
technology) in the 13.56 MHz ISM band.

This concept was entitled near field communication – interface and protocol – 1
(NFCIP-1). It has been adopted in 2005 as international standard ISO/IEC 18092.

This standard completes the classical active coupler/passive card scenario by
introducing active/active communication: both the coupler (or initiator) and the card
(or target) may now generate the 13.56 MHz carrier alternatively. It also introduces a
peer-to-peer communication mode, superseding the earlier command/response (or
master/slave) schemes.

The peer-to-peer mode is theoretically ready to convey any kind of higher-level
network and application protocols, hence the analogy between NFCIP-1 and TCP/IP.

Then, Philips and Sony partnered with Nokia (at that time the leader of the mobile
phone market) to create NFC Forum. Their goal was to develop an ecosystem of
added-value applications, combining all the technologies based on inductive
coupling in the 13.56MHz band: the new ISO/IEC 18092 peer-to-peer
implementation, and the pre-existing ISO/IEC 14443 and ISO/IEC 15693 coupler (or
reader/writer) and card implementations.

Putting everything together, and after 10 years of existence, NFC Forum provides a
consistent set of specifications, largely adopted by mobile phone manufacturers and
also by mobile network operators, to do the following:

 Have a mobile phone emulate a contactless smartcard – and be able to use
its SIM card (or UICC) as a secure execution environment; this has led to
Apple Pay, Google Wallet and a few alternative contactless payment systems,
and to the virtualization of public transport tickets into the phone,

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 56 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Have two mobiles phones communicate together using NFCIP-1 “peer-to-
peer” to exchange small pieces of information: a business card or a contact
entry, a link to the running application or to the currently active web page,
etc. This system is known as Windows Proximity Networking in Microsoft’s
world, and Android Beam in Android’s world26.

 Have a mobile phone fetch small pieces of information from a static object: a
NFC Tag.

The later is the concept that is detailed in the next paragraphs.

 Developing in the mobile phone is out-of-the scope of this guide since it has little in
common with PC/SC and is strongly tied to the mobile system’s API. But at least, the
concepts at work when exchanging an APDU with a smartcard are the same.

Implementing card emulation or peer-to-peer using SpringCard couplers will be
addressed in a future guide.

3.5.2. The concept behind NFC Tags

Basically, NFC Tags are contactless cards holding some publicly-readable data. These
data are organized according to an open format. They should be understood and
handled the same way by all the “readers”. In most situations, the “reader” is a
software component provided by the terminal’s operating system itself, namely
Android or iOS for smartphones.

Most frequent usages of NFC Tags are opening a web page in the smartphone’s
browser, but there are many other innovative use cases as well: initiate a phone call,
add a business card to the list of contacts (vCard), configure a wireless
communication channel (WiFi or Bluetooth automated pairing), launch and
application and/or execute a custom action on the phone.

In short, NFC Tags provides the same functionality to end-users as 2D barcodes
(QRCode / flashcode), but with a faster – and more user-friendly – gesture.

3.5.3. NFC Forum Data Exchange Format and Record Types

The public content that is stored in the card’s memory is organized according to a set
of specifications edited by the NFC Forum.

26 NFC communication requires that the two phones stays in close proximity, which is a terrible user experience when the
duration of the exchange increases. For this reason, NFC peer-to-peer is limited to 1 or a few KB of data only. When more
data are to be transmitted, both peers negotiate the opening of a new communication channel, based on Bluetooth or WiFi.
The NFC channel is then used only for handshaking, the devices do a handover and communicate through the faster, longer-
distance 2.4 GHz wireless channel.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 57 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

The top level specification is called a NFC Forum Data Exchange Format (NDEF). A
NDEF message contains one or a few records. The specification of the records are
named Record Type Definitions (RTD).

The commonly used RTDs are

 URI or URL (http:, https:, mailto:, callto:, smsto: …),

 Text, to store an informative text that could be displayed to the user,

 Arbitrary MIME data (for instance to store a small icon using the image/png
type, or a business card with the text/x-vCard type),

 Connection handover (WiFi or Bluetooth automated pairing),

 Signature, holding the proof that the NFC Tag has been created by a certain
issuer, and that the NDEF message has not been altered.

The smartposter RTD refers to a compound record, holding an URL, a Text and an
action verb (open, save, print..).

3.5.4. List of compliant PICCs / VICCs

NFC Forum content could be stored on any card that has enough memory to store
the NDEF message itself and the associated headers27.

Following the urge for a total interoperability between any NFC Tag and any NFC-
enabled smartphone, the NFC Forum has limited its list of ‘officially compliant’ cards
providers to only 5 families of contactless chips28.

3.5.4.1. Type 1 Tag (T1T)

The NFC Forum T1T specification is a copy/paste of the datasheet of the “Topaz”
card, a low-cost, wired-logic PICC using a custom protocol based on ISO/IEC 14443-2
type A bit-level modulation. The card has been developed by Innovision Research &
Technology, now a part of Broadcom.

As any other wired-logic card, Type 1 Tags are supported by PC/SC couplers thanks to
the embedded APDU-Processor, through the READ BINARY and UPDATE BINARY
instructions. Once stored in the Tag, the NDEF message may be write-protected by
setting a lock byte.

27 They could also be pushed through a peer-to-peer communication channel (NFC beam)
28 Until 2016, only types 1 to 4 were defined, therefore a lots of implementation may still lack support for type 5

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 58 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.5.4.2. Type 2 Tag (T2T)

The NFC Forum T2T specification is a copy/paste of the datasheet of the “MIFARE
UltraLight” card by NXP (formerly Philips Semiconductors, Philips being one of the
founders of the NFC Forum)29. This card is also a low-cost, wired-logic PICC, that has
been designed with disposable transport tickets in mind. It uses a custom protocol
on top of ISO/IEC 14443 up to -3, type A.

The “up to -3” makes it faster and more interoperable with old generations of
couplers than the T1T.

The initial MIFARE UltraLight card was limited to 48 bytes of storage, but NXP now
offers under the NTAG brand capacities going up to 2KB. Infineon also has an
interesting portfolio of chips and cards compliant with T2T (my-d NFC).

The PC/SC embedded APDU-Processor gives access to Type 2 Tags through the same
READ BINARY and UPDATE BINARY instructions. Also special lock bytes make it
possible to turn the Tag read-only.

3.5.4.3. Type 3 Tag

The NFC Forum T3T specification is a copy/paste of the datasheet of the “FeliCa Lite”
card by Sony. This is a light-weight version of Sony’s original FeliCa card, with the
security features removed. It uses a Japanese protocol (JIS X 6319-4) named “NFC-F”
in NFC Forum’s documentations).

The PC/SC embedded APDU-Processor gives access to Type 3 Tags through the same
READ BINARY and UPDATE BINARY instructions.

3.5.4.4. Type 4 Tag

The NFC Forum T4T specification defines how to use a generic, interoperable,
contactless smartcard to store a NDEF message.

The card shall support both ISO/IEC 14443 up to -4 (either type A or B, respectively
named “NFC-A” and “NFC-B” in NFC Forum’s documentations). On top of that, the
card shall support the ISO/IEC 7816-4 command set (SELECT APPLICATION, SELECT
FILE, READ BINARY) and provide 2 files to store a header and the NDEF message
itself.

The specification does not describe how the files are created, nor how to write their
contents, since NFC Forum focuses on the use (reading) and not on the issuing
process.

Virtually any contactless smartcard may therefore be used to implement a T4T.
Notably, SpringCard’s SDK has an example on how to format a NXP Desfire EV1 to
become a valid T4T.

STMicroElectronics also has a portfolio of smartcards already formatted as T4T.

29 For more information regarding the MIFARE family, read 3.6.1.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 59 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

The NDEF may be locked, or its write access may be controlled by a password or any
kind of authentication method, depending on the features the card supports – and
on the features the developer has decided to use.

3.5.4.5. Type 5 Tag

Adopted in 2016, the NFC Forum T5T specification defines how to use an ISO/IEC
15693 VICC to store a NDEF message (“NFC-V” technology in NFC Forum’s
documentations).

There is not much to add here: PC/SC couplers have been supporting for VICCs for
long. The memory is accessed through READ BINARY and UPDATE BINARY
instructions translated by the embedded APDU Processor to the Read Block / Write
Block commands defined in ISO/IEC 15693-3.

Compliant cards could be found at NXP’s (ICODE-SLI family), STMicroElectronics’ (LR
family), Infineon’s (my-d Vicinity family) and Texas Intrument (Tag-IT family).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 60 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.6. Key actors and brands

3.6.1. NXP, ex Philips Semiconductors

3.6.1.1. MIFARE – The historical background

In the early 1990’s, an Austrian company called Mikron introduced an emerging
technology: a wired-logic card featuring semi-structured storage and some kind of
security, using inductive coupling at 13.56 MHz to communicate with its coupler.

As the 1st expected marked was the automatic fare collection, the card was named
MIFARE for MIkron FARE collection. In 1994, Mikron started working with the ISO
smartcard committee on the development of what would become ISO/IEC 14443
(type A).

In 1995, Philips purchased Mikron and the MIFARE technology. Later on, Philips
decided to split its assets and Philips Semiconductors became NXP.

Philips / NXP decided to use the brand as a common name for an ever growing family
of PICCs. Most of these products are still wired-logic cards (MIFARE Classic, MIFARE
UltraLight), but some others are microprocessor-based cards (MIFARE Pro, ProX,
SmartMX, MIFARE DESFire, MIFARE Plus).

3.6.1.2. MIFARE Classic

Illustration 16: Outprint of a MIFARE Classic promotional card

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 61 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

The early version of the MIFARE card is now known as MIFARE Classic. It comes in
two flavors30.

 The MIFARE Classic 1K features 64 blocks of 16 bytes. Over these 64 blocks,
16 are reserved to store security keys and control the access rights on 16
parts of the memory, known as sectors, and the 1st block store read-only
manufacturers data (such as a unique serial number or UID). This makes 752
bytes available for user’s data.

 The MIFARE Classic 4K features 256 blocks of 16 bytes, divided in 40 sectors.
The sectors below 2K use the same “3+1 blocks” mapping as the 1K card,
where the sectors above 2K use a “15+1 blocks” mapping. This makes 3440
bytes available for user’s data.

The card uses a proprietary command set on top of ISO/IEC 14443-3 type A, but with
a noticeable difference: MIFARE Classic’s security relies on a proprietary stream
cipher algorithm, CRYPTO1, and CRYPTO1 breaks the layered model by ciphering the
parity bits and the CRC of every frame (instead of ciphering the data before
computing the parity and the CRC).

CRYPTO1 uses 48-bit keys – which is very weak – and all cards manufactured until
recently are affected by a vulnerability in the random number generator. The security
scheme of MIFARE Classic has been totally broken in 2009-2010, and the card shall
be considered for what it is: a low-cost, insecure storage memory.

3.6.1.3. MIFARE Plus

Following the security breach of CRYPTO1, NXP has introduced the MIFARE Plus, a
new generation of contactless cards based on a small microcontroller, and offering a
strong AES (128 bits) security, yet using (basically) the same command set and
memory mapping as MIFARE Classic to allow a smooth migration.

The card’s issuer is responsible for managing its life-cycle over 3 steps called
“security levels” (SL), going from MIFARE Classic emulation (SL1) up to highly secure
SL3 mode.

There are 2 subfamilies:

 MIFARE Plus X has all the security features. It is export-controlled,

 MIFARE Plus S has less security features, but could be exported freely.

Both cards exist in 2K and 4K memory size.

Two interesting security features of MIFARE Plus X are the proximity check, the use of
a distance-bounding protocol to prevent relay attacks, and the virtual card concept, a
way for the coupler to pre-select a particular virtual card in a NFC object that is able
to emulate many.

30 There used to be a 3rd flavour, the MIFARE Classic Lite which is more-or-less a 1K with only 4 sectors instead of 16, but it has
been abandoned as prices of the 1K dropped down with maturity.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 62 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Also the virtual card concept increases the level of privacy of the contactless system,
because the card may use a random protocol-level identifier (RID) instead of sending
its a unique identifier (UID) in response to the coupler’s polling loop.

Only a coupler belonging to the same “owner” as the card – and therefore sharing a
secret key with the card – will then be able to retrieve the actual UID and start
processing the card.

3.6.1.4. MIFARE UltraLight and NTAG

The low-end of the family is the MIFARE UltraLight, a chip with only 48 bytes
available for user’s data, and no security. It targets low-cost applications, where the
card could be disposed-of after a single or a few uses only.

Being a cheap yet fast wired-logic card, the MIFARE UltraLight is the foundation of
the NFC Forum Tag 2 standard (see paragraph 3.5.4.2). Chips fully compliant with
MIFARE UltraLight, but with a larger memory capacity, are now sold by NXP under
the NTAG brand.

Another derivate of the MIFARE UltraLight is the MIFARE UltraLight C that includes
an authentication scheme based on the 3DES algorithm (112 bits). This card targets
the market of disposable tickets, typically in the public transport field.

3.6.1.5. SmartMX

SmartMX is NXP’s current family in secure microcontrollers, based on an 8051 (8-bit)
architecture. It is marketed to host eGov applications (passports, ID card, health
card…) or to power NFC-aware objects in the IoT world, and supersedes the earlier
MIFARE Pro and MIFARE ProX families.

NXP also maintains JCOP, a JavaCard operating system initially developed together
with IBM. JCOP allows card-application developers to develop Java “cardlets” for the
SmartMX chip.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 63 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.6.1.6. DESFire

The DESFire contactless smartcard is based on a core similar to the SmartMX, but is
not open to card-applications developers. The chip comes with a general purpose
operating system in ROM, that offers a simple directory structure and files.

The card communicates using ISO/IEC 14443-4 type A. The command set is
proprietary, but could be encapsulated to comply with the APDU format of ISO/IEC
7816-4. A few ISO/IEC 7816-4 instructions have been introduced in version EV1 to
ease the adoption of the DESFire card in open, interoperable architectures.

Last version is EV2, that adds the proximity check concept (introduced on MIFARE
Plus) and more notably a delegated administration model, that solves most of the
issues of multi-application card schemes.

Regarding the security aspects, the 1st generation rely on 3DES with 2 keys (112 bits)
for mutual authentication and ciphering. EV1 and EV2 also support AES (128 bits)
and 3DES with 3 keys (168 bits).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 64 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.6.1.7. ICODE

ICODE is NXP’s brand name for vicinity and RFID products. The pre-standard ICODE-1
has been discontinued for long, and three families exist today:

 ICODE-SLIX and ICODE SLIX 2 are ISO/IEC 15693 VICCs, also compliant with
ISO/IEC 18000-3M1,

 ICODE DNA are also ISO/IEC 15693 VICCs, but they introduce high-end
security (AES-based dynamic mutual authentication) that was previously
available only on PICCs,

 ICODE ILT are compliant with ISO/IEC 18000-3M3 and EPC HF.

3.6.2. STMicroElectronics

3.6.2.1. Wired-logic PICCs

STMicroElectronics SR chips offer a short-range RFID interface compatible with
ISO/IEC 14443-2 (bit-level modulation) type B, and the frame format of ISO/IEC
14443-3 type B. The anticollision scheme as well as the top-level command set are
proprietary.

The 1st generation (SR176) and its descendants (SRT512, SRI512, SRI2K, SRI4K) are
used as single-trip ticket in the public transport field, mostly embedded in disposable
paper cards.

The SR series is now superseded by the ST25TB family (ST25TB512, ST25B02K,
ST25B04K). Chips in this family are compatible with the previous generation from the
coupler point of view.

The ST25TA family are contactless smartcards (ISO/IEC 14443, type A) already
formatted to be an NFC Forum Type 4 Tag.

3.6.2.2. MCUs for PICCs

STMicroelectronics offers secure microcontrollers (ST21, ST33), based on ARM cores,
to smartcard developers. They are for instance the platform powering a lot of
Calypso cards.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 65 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.6.2.3. VICCs

The LR series, as the initials suggest, is ST’s long-range RFID family. They are fully
compliant with ISO/IEC 15693.

The LR series will be shortly superseded by the new ST25TV family.

3.6.3. Infineon

3.6.3.1. Wired-logic PICCs

Infineon SRF 66R “my-d proximity” are ISO/IEC 14443-3 type A PICCs. They use the
same command set as NFC Type 2 Tags, plus a proprietary authentication scheme.

The family includes products branded “my-d NFC” with no authentication and the
memory initialized as a NDEF container.

Infineon is also a MIFARE licensee and offers a clone of the Classic 1K (SLE 66R35).

3.6.3.2. MCUs for PICCs

Infineon has a wide range of secure microcontrollers (16-bit core) with ISO/IEC
14443 interface (SLC32, SLE77, SLE78). They are the basis of many payment or
transport cards. Some of them may incorporate a MIFARE Classic emulation.

3.6.3.3. VICCs

Infineon SRF 55V “my-d vicinity” are ISO/IEC 15693 + ISO/IEC 18000-3M1 VICCs.
Some chips in the family include a proprietary authentication scheme.

3.6.4. Texas Instrument

3.6.4.1. VICCs

The Tag-it HF-I chips are fully compliant with ISO/IEC 15693. They can be used as NFC
Type 5 Tags as well. Texas Instrument offers a very wide choice of ready-to-use inlays
based on these chips.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 66 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

3.6.5. Atmel (now Microchip)

3.6.5.1. Wired-logic PICCs

Atmel CryptoRF (AT88SCxxxxCRF) are wired-logic contactless chips or ready-to-use
tags, using ISO/IEC 14443-2 (bit-level modulation) and ISO/IEC 14443-3 (frames and
anticollision) type B.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 67 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

4. PC/SC Stack – role, specificities, alternatives

4.1. Introduction
PC/SC stands for “Personal Computer / Smart Card”. It’s the de facto standard to use
smartcards – and smartcard couplers – from a mainstream computer environment.

PC/SC has been written and is maintained since 1996 by the PC/SC Workgroup.

 The PC/SC Workgroup’s website is: www.pcscworkgroup.com

PC/SC provides a complete abstraction of the underlying coupler and driver. All
SpringCard PC/SC couplers comply with this standard. It ensures interoperability
among manufacturers: a SpringCard coupler may be used with a PC/SC-aware
application written with another coupler in mind, and vice-versa.

Interestingly, PC/SC makes no difference between a contact coupler (CD) and a
contactless coupler (PCD/VCD), and hides most of the specificities of either
technologies. Last but not least, PC/SC makes it possible to operate wire-logic cards
(and more specifically wired-logic contactless cards, RFID labels and NFC tags in the
case of SpringCard contactless couplers) using “classical” APDUs, as if they were
microcontroller-based smartcards.

The possible alternatives to PC/SC are covered by chapter 8.

4.2. The PC/SC architecture (and vocabulary)
PC/SC relies on a layered architecture, going from the coupler (smartcard reader)
and its driver up to the high-level application programming interface (API) through a
middleware (system-provided processes and libraries) that implements both the
device abstraction facility and a strong isolation between the client card-aware
applications – for security reasons31.

Illustration 17 (page 70) shows the PC/SC stack.

4.2.1. Smartcards, readers and drivers

The smartcard or ICC (Integrated Circuit Card) is inserted into a reader or IFD
(InterFace Device). This is, strictly-speaking, a “coupler” and not a reader.

The IFD, a hardware product, is associated to a reader driver or IFD handler.

31 Imagine you enter your PIN in an application to unlock your credit card, or your phone’s SIM card, to explore its content. Do
you really want that another application (maybe a malware) could also communicate with your now unlocked card?

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 68 / 128

http://www.pcscworkgroup.com/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

The manufacturer of the product has two options: either provide a custom driver for
“all” the operating systems, or implements its product following an open
specification, in the hope that the operating systems will provide a generic driver
based on the same open specification. This is the option opened by the USB
workgroup with the USB contact card interface device (CCID) specification, and this is
the option chosen by SpringCard for its PC/SC couplers.

 Thanks to this USB CCID profile, SpringCard USB PC/SC couplers are supported by a
generic, open source, USB CCID driver, that is available on Linux and many other
Unix-like systems. Apple also uses the source code of this driver to support the CCID
USB PC/SC couplers in Mac OS X.

Microsoft Windows also provides a generic USB CCID driver in Windows, but
unfortunately this driver as a lot of limitations. Therefore, SpringCard provides its
own USB CCID driver for Windows.

4.2.2. The middleware

The drivers are under the control of the PC/SC middleware or ICC resource manager.

This middleware is responsible for maintaining the list of currently connected
couplers, notifying the applications when a smartcard is inserted in a coupler, and
preventing two (or more) applications from accessing the same card simultaneously.

On Windows, the PC/SC middleware is implemented by a system service named
“Smart Card Service” (scardsvr.exe). On Linux/Unix-likes, it is implemented in the
pcscd daemon.

4.2.3. The API

An application that aims to use smartcards – a ICC-aware application – loads a user-
land dynamic library to invoke the services provided by the PC/SC middleware
through entry-points specified as the “PC/SC API”.

On Windows, the shared PC/SC library is winscard.dll, and libpcsclite.so on
Linux/Unix-likes. There are various wrappers for managed platforms (such as .NET or
Java) or script engines (Python, Perl, Lua, JS, etc).

4.2.4. Helpers

In-between the middleware and the application, the ‘helpers’ are optional software
components that give a more abstract view to the application developer.

For instance, a card providing general-purpose cryptographic primitives (ciphering,
deciphering, digital signature) is likely to be associated with a ‘card helper’ that
exposes its primitives with a high-level, interoperable, object-oriented approach.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 69 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Thanks to the helper, the application developer does not have to deal with the card
at APDU-level; his application may even support different cards easily, provided that
they offer the same primitives – even if this is done with different implementations.

Typical examples are the cards used for digital signature or secure login onto the
computer or the Active Directory infrastructure, that are supported through
Windows’ CryptoAPI

Illustration 17: The PC/SC stack

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 70 / 128

PC/SC application
ICC-aware application

Reader driver
IFD handler

Reader
IFD

USB, serial,
network...

Smartcard
ICC

PC/SC middleware
ICC resource manager

Reader driver
IFD handler

Reader
IFD

USB, serial,
network...

Smartcard
ICC

Reader driver
IFD handler

Reader
IFD

USB, serial,
network...

Smartcard
ICC

PC/SC library

‘card helper’
ICC service provider

‘reader helper’
IFD service provider

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

4.3. PC/SC on Microsoft Windows
Microsoft was one of the founders of the PC/SC workgroup, and all desktop systems
since Windows 95 and Windows NT 4.0 do include the middleware. This is not so
clear for mobile or embedded systems (Windows CE, Windows Phone, Windows IoT
Core) where the middleware may be installed or not, depending on how the system
image is generated.

 Following the deep integration of NFC technologies into the operating system of a
today’s mobile phone, Microsoft has introduced in its Windows Phones and Surface
Tablet a new Proximity API, that is an alternative to PC/SC to communicate with
contactless cards.

But to-date, the Proximity API is strictly tied to a few specific hardware, where the
NFC interface is directly connected to the core CPU, and not a remote (USB /
network / other?) device.

Also, the Proximity API is limited to NFC Forum’s specifications, and therefore offers
little to no support for the many families of wired-logic contactless cards that have
not been endorsed by the NFC Forum.

Hence, PC/SC remains the interface of choice for pluggable contactless couplers.

4.3.1. Official documentation

The documentation related to PC/SC is sprinkled among many pages of Microsoft’s
websites. We list here only the two main entry points:

A general introduction to using the smartcard under Windows, simply entitled
“Smart Card” is available at:

 https://msdn.microsoft.com/en-us/library/bb742533.aspx

The article “Accessing a Smart Card” is the entry-point to explore the API, as it is
implemented by Microsoft, by clicking “SCardConnect” after having read the
introductory text:

 https://msdn.microsoft.com/en-
us/library/windows/desktop/aa374709(v=vs.85).aspx

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 71 / 128

https://msdn.microsoft.com/en-us/library/windows/desktop/aa374709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb742533.aspx

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

4.3.2. Technical implementation

The PC/SC API is exposed through a single dynamically callable library, winscard.dll .

Key functions of the PC/SC API are introduced in chapter 5, and more completely
documented in doc. PMDZ061.

C and C++ developers building native Windows applications use the winscard.h
header and link their program against winscard.lib, which provide the static entry
points to use winscard.dll . Care must be taken that for every function that takes a
string as parameter (for instance, the name of the coupler in SCardConnect), the
library exposes both ASCII and UNICODE versions (SCardConnectA and
ScardConnectW).

Managed applications must use a wrapper to access the PC/SC stack through
winscard.dll ; a Java application is likely to use the standard wrapper named
javax.smartcardio.

For .NET applications, there is no standard wrapper. SpringCard proposes its own
wrapper for convenience (look for the SpringCard.PCSC namespace in the SDK).
There are also plenty of open-source alternatives, and also a few paid solutions
(including ActiveX components for legacy development environments).

4.3.3. Writing and using card helpers

Microsoft recommends to write a “card helper”, or ICC service provider, a reusable
software component that provides high-level access to the services offered by the
smartcard. This simplifies the job of the top-level application developer, who does
not have to manipulate the APDUs and any raw data in his business logic.

Vendors of cryptographic smartcards, used for digital signature and/or to logon the
system, typically do so by providing either a Smart Card Cryptographic Provider (CSP)
or a Smart Card Mini Driver.

 Smart Card Cryptographic Service Provider specification:
https://msdn.microsoft.com/en-us/library/ms953432.aspx

 Smart Card Mini Driver specification:
https://msdn.microsoft.com/en-
us/windows/hardware/drivers/smartcard/smartcard-minidrivers

Anyway, in most projects, it is much simpler – and perfectly fine for the
developer(s) – to implement the communication with the smartcard directly into the
application. It is also possible to implement a basic helper through a DLL or a Class
Library, without bothering with CSP or Mini Driver specifications.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 72 / 128

https://msdn.microsoft.com/en-us/windows/hardware/drivers/smartcard/smart-card-minidrivers
https://msdn.microsoft.com/en-us/windows/hardware/drivers/smartcard/smart-card-minidrivers
https://msdn.microsoft.com/en-us/library/ms953432.aspx

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Doc. TBD introduces such a Class Library: SpringCard.NfcForum.Tags; written in
C#, it allows an application developer to read or write NFC Forum Tags at a high
abstraction level, on top of the SpringCard.PCSC classes.

4.3.4. Limitations

Some parts of Windows’ PC/SC stack have always been the source of issues when
more than 10 couplers are connected to the computer.

Starting with Windows 8, Microsoft officially limits the use of its PC/SC stack to ten
couplers.

You may attach more than ten coupling devices to the computer, but
SCardListReaders, the command that enumerates the couplers, will never return
more than ten. The other couplers are ignored.

 Please read Microsoft KB #3144446 for reference and explanations.

Some SpringCard PC/SC couplers, like the CSB HSP or the CrazyWriter HSP, could host
in a single USB device as many as 5 or 6 PC/SC couplers (1 contactless slot, 1 ID-1
slot, 3 or 4 SIM/SAM slots). It is very easy to overflow the system’s limitations with
these products.

4.4. Linux and other UNIX-like systems
A group of volunteers has created MUSCLE, Movement for the Use of Smart Cards in
a Linux Environment. They have developed, and now maintain, PCSC-Lite, the open-
source PC/SC stack for Linux and other UNIX-like systems.

MUSCLE PCSC-Lite project: http://www.musclecard.com

Direct link to PC/SC stack: http://pcsclite.alioth.debian.org

The PC/SC middleware is implemented in a daemon named pcscd. The PC/SC API is
exposed through a single dynamically callable library, libpcsclite.so.1 . The
corresponding header file is named winscard.h for compatibility with Windows
applications at source code level.

SpringCard USB PC/SC couplers are supported thanks to the open-source CCID driver
developed for PCSC-Lite by Ludovic Rousseau, as documented here:

 Direct link to PCSC-Lite’s USB CCID driver:
https://pcsclite.alioth.debian.org/pcsclite.html

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 73 / 128

https://pcsclite.alioth.debian.org/pcsclite.html
http://pcsclite.alioth.debian.org/
http://www.musclecard.com/
https://support.microsoft.com/en-us/help/3144446/limitation-of-10-smart-card-readers-in-windows-server-2012-r2,-windows-8,-and-later

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

For SpringCard non-USB couplers (for instance, TwistyWriter-IP PC/SC relies on a
CCID over TCP over Ethernet implementation), SpringCard provides an open-source
driver32.

 SpringCard NetPCSC driver for PCSC-Lite:
http://tech.springcard.com/2016/springcard-netpcsc-for-pcsc-lite/

Ludovic Rousseau also authors a very interesting blog related to smartcard
development in the UNIX-world. It also documents how to access the PC/SC API from
various scripting languages (Lua, Python, PERL, Node.js, etc).

 Ludovic Rousseau’s blog: https://ludovicrousseau.blogspot.fr/

 SpringCard is not connected with and does not sponsor or endorse 3rd party open-source developers.

4.5. macOS X
Apple provides a fork of the PCSC-Lite stack (and of the open-source USB CCID
driver) within their UNIX-like system. The dynamically callable library is renamed
PCSC.framework/PCSC.

The documentation is hosted on GitHub:

 Apple Smart Card Services: https://smartcardservices.github.io/

Once again, Ludovic Rousseau’s blog is a very interesting source of information, with
many tips (or bug explanations) related to Apple Mac OS X:

 The ‘”Apple” keyword at Ludovic Rousseau’s:
https://ludovicrousseau.blogspot.fr/search?q=apple

 SpringCard is not connected with and does not sponsor or endorse 3rd party open-source developers.

32 SpringCard drivers for PCSC-Lite are forks of the original USB CCID driver for PCSC-Lite, and are released under the same
LGPL license.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 74 / 128

https://ludovicrousseau.blogspot.fr/search?q=apple
https://smartcardservices.github.io/
https://ludovicrousseau.blogspot.fr/
http://tech.springcard.com/2016/springcard-netpcsc-for-pcsc-lite/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

4.6. Android
As a Linux-based system, it would be logical that Android includes its version of
PCSC-Lite. But this is not the case in out-of-the-box system images.

Giesecke & Devrient, a german manufacturer of smartcards, promotes a complex
project named SEEK for Android, SEEK being “Secure Element Evaluation Kit”, that
includes some efforts to port PCSC-Lite on Android.

Unfortunately, their promising pcscdroid project is not maintained anymore, and is
strictly limited to custom system images or to ‘rooted’ devices, which prevent any
adoption as a mainstream solution.

SEEK for Android main page: http://seek-for-android.github.io/

The Pcscdroid project:
https://github.com/seek-for-android/pool/wiki/%5BUNMAINTAINED%5D-Pcscdroid

 SpringCard is not connected with and does not sponsor or endorse 3rd party open-source developers.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 75 / 128

https://github.com/seek-for-android/pool/wiki/%5BUNMAINTAINED%5D-Pcscdroid
http://seek-for-android.github.io/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5. An application that uses PC/SC – Introduction to
the API and typical workflow

5.1. Introduction
The illustration on the left shows the typical workflow of a
PC/SC application.

The functions are introduced in the paragraphs hereafter. For a
more complete documentation, please refer to doc. PMDZ061
or to Microsoft’s documentation available on MSDN.

In most situations, it is possible to use a PC/SC coupler from an
object-oriented language using higher-level objects. This is for
instance the case in .NET thanks to SpringCard’s
SpringCard.PCSC class library, and to javax.smartcardio in
Java.

Care must be taken anyway that, whatever the depth of OOP
concepts and classes under your application, it all summarizes
as passing calls to the underlying PC/SC API. Therefore, it is
better to have a clear understanding of the mechanisms at
work, in order to avoid a few design flaws that could easily turn
into a bad user experience.

Chapter 7 gives more details about this.

We must also put emphasis (once again) on the fact that the
PC/SC coupler is not much more than a pass-through device
between the application and a smartcard. The coupler has no
clue of what you (or what the application you are developing)
want to do with the smartcard. It does even not now how to
“read” or “write” a card in general case; always refer to the
smartcard’s documentation!

Yet, to support wired-logic contactless cards (or RFID labels, or
NFC tags), the PC/SC coupler embeds some processing logic
that translates a few chosen C-APDUs (READ BINARY, UPDATE
BINARY) into commands the card will understand (more on this
in paragraph 6.6).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 76 / 128

Start

Open the library
SCardEstablishContext

List the couplers
SCardListReaders

Select the coupler
User input / Stored config

Try to connect
to the card

SCardConnect

Connection
OK?

Something
else?

Send C-APDU /
Receive R-APDU
SCardTransmit

Close the library
SCardReleaseContext

Disconnect from
the card

SCardDisconnect

Done

YES

YES

NO

NO

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.2. Establish a PC/SC context
The first step is to initialize the client part of the PC/SC API by calling the
SCardEstablishContext function.

Within winscard.dll (or its counterpart for PCSC-Lite) this has the effect of opening a
communication channel with the middleware and to instantiate the variables.

 In a multi-threaded application, every thread (that calls functions from the PC/SC
API) shall have its own context.

LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID *pvReserved1,
 IN LPCVOID *pvReserved2,
 OUT LPSCARDCONTEXT phContext);

For those non-familiar with the Hungarian notation used by Microsoft, let’s translate:

 dwScope is a double-word (4 bytes) input value. Set it to the constant
SCARD_SCOPE_SYSTEM (value = 2).

 In the context of a terminal server or remote desktop session, dwScope tells the
PC/SC middleware whether the application wants to use the server’s resources, the
terminal’s, or the local user’s.

In any other contexts, use SCARD_SCOPE_SYSTEM with no hesitation.

 pvReserved1 and pvReserved2 are constant input pointers to anything
(LPCVOID stands for long pointer to a const void). Set them to NULL.

 phContext is a pointer to a SCARDCONTEXT (LPSCARDCONTEXT is equivalent
to void *SCARDCONTEXT), that will hold the output data after a successful
call.

SCARDCONTEXT is an opaque handle. With a non-C/C++ language, use a generic
pointer (System.IntPtr on .NET). This makes phContext a pointer to a generic pointer
(ref System.IntPtr on .NET).

SCardEstablishContext, as well as all other functions from the PC/SC API, returns a
LONG (signed long integer). On success, its value is SCARD_S_SUCCESS (value = 0).

Refer to paragraph 7.4 for a few information regarding the error codes and their
understanding.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 77 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.3. List the PC/SC couplers
Get a list of the available PC/SC couplers using the SCardListReaders function.
LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

Let’s explain the Hungarian notation and the parameters again:

 hContext is the pointer you got as output to SCardEstablishContext,

 mszGroups is a constant input pointers to a string: long pointer to a const “T”
string, the “T” meaning that the string could use either single-byte characters
(char) or multibyte characters (wchar_t)33. Set this parameter to NULL.

 mszReaders is the output string that will hold the list of couplers after a
successful call. It shall have been allocated by the caller application,

 pcchReaders is a pointer to the length of the mszReaders string (in number of
characters, not number of bytes). On input, the caller application sets the
pointed value to the allocated length. On output, the library tells how many
characters are used by the string.

 Classical examples use SCardListReaders twice: upon first call mszReaders is set to
NULL, so pcchReaders provides the number of characters that must be allocated.
Then the caller application allocates a string of the given length, and calls
SCardListReaders a second time with it.

On modern systems, and given the limitation to 10 couplers on Windows, just
allocate a large string (say, at least 1024 characters) once for all.

On output, mszReaders holds the list of couplers, in the form of a multi-string string.
Now, what is a multi-string string? It’s an array of characters (char or wchar_t
depending). As any other string, every string in the array is zero-terminated (‘\0’
character). The end of the array is marked by a double zero (“\0\0”).

 javax.smartcardio implements SCardListReaders through the CardTerminals
class.

SpringCard.PCSC for .NET implements SCardListReaders through the
SCardReaderList class.

33 Actually, the SCardListReaders function has no existence. It’s an alias to either SCardListReadersA (ASCII implementation, the
strings being handled as char[]) or SCardListReadersW (UNICODE implementation, the strings being handled as wchar_t[]). A
C/C++ source including winscard.h will use either implementation depending on whether _UNICODE is defined or not.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 78 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

BOOL print_readers(void)
{
 SCARDCONTEXT hContext;
 char *pReader, *szReaders = NULL;
 DWORD dwReadersSz = 1024;
 int cReaders = 0;
 LONG rc;

 rc = SCardEstablishContext(SCARD_SCOPE_SYSTEM, NULL, NULL, &hContext);
 if (rc != SCARD_S_SUCCESS)
 {
 printf("SCardEstablishContext error %08lX\n", rc);
 return FALSE;
 }

 szReaders = calloc(dwReadersSz, sizeof(char));
 if (szReaders == NULL)
 {
 printf("Allocation failed\n");
 goto failed;
 }

 rc = SCardListReaders(hContext,
 NULL, /* Any group */
 szReaders,
 &dwReadersSz);
 if (rc != SCARD_S_SUCCESS)
 {
 printf("SCardListReaders error %08lX\n",rc);
 goto failed;
 }

 /* Iterate through the readers */
 pReader = szReaders;
 while (*pReader != '\0') /* End of array reached */
 {
 printf("Reader %d: %s\n", pReader); /* Print the reader name */
 cReaders++; /* Increment count of readers */
 pReader += strlen(pReader) + 1; /* Next string in multi-string array */
 }

 /* Done, success */
 free(szReaders);
 SCardReleaseContext(hContext);
 return TRUE;

failed:
 /* Done, error */
 if (szReaders != NULL) free(szReaders);
 SCardReleaseContext(hContext);
 return FALSE;
}

Illustration 18: A minimal C function to list the PC/SC couplers

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 79 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.4. Is there a card in the coupler?
Use the SCardGetStatusChange function to read the status of the coupler.
LONG SCardGetStatusChange(IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderState,
 IN DWORD cReaders);

Where:

 hContext is the pointer you got as output to SCardEstablishContext,

 dwTimeout is the time to wait for an event (in milliseconds). In this part of
the document, we set it to 0 (return immediately),

 SCardGetStatusChange could be used in two modes: non-blocking (query only), with
the dwTimeout parameter set to 0, or blocking until an event occurs is dwTimeout is
non-0. The later will be shown in 7.2 “Using background threads”.

In this chapter, we remain very basic: the user has a button to click to initiate the
card transaction, and we use SCardGetStatusChange to verify that there is actually a
card in the coupler only when he clicks this button.

 rgReaderState is an array of SCARD_READERSTATE structures – one entry per
coupler you want to monitor, i.e. only one entry when you are working with
one coupler only. On input, you write into the structure the name of the
coupler you are working with and its assumed current status (“don’t know” is
a good assumption on first call!). On output, the structure contains the actual
status of the coupler (no card, card present, card in use…). If there is a card in
the coupler, the structure also provides its ATR.

 chReader is the number of entries in the rgReaderState array. With one
coupler only, we set it to 1.

Things will be clearer with an example: see illustration 19 on next page.

 javax.smartcardio implements SCardGetStatusChange as
CardTerminal.isCardPresent() (no wait) or CardTerminal.waitForCardAbsent(long
timeout) (blocking).

SpringCard.PCSC implements SCardGetStatusChange as SCardReader.CardPresent.
The algorithm “is there a card available in the coupler” that appears in illustration
19 is implemented as SCardReader.CardAvailable.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 80 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

BOOL is_card_available(SCARDCONTEXT *hContext, const char *reader_name)
{
 SCARD_READERSTATE reader_state;
 LONG rc;

 memset(&reader_state, 0, sizeof(reader_state));
 reader_state.szReader = reader_name;
 reader_state.dwCurrentState = SCARD_STATE_UNAWARE; /* "Don’t know" */

 rc = SCardGetStatusChange(hContext, 0, &reader_state, 1);
 if (rc != SCARD_S_SUCCESS)
 {
 printf("SCardGetStatusChange error %08lX\n", rc);
 return FALSE;
 }

 /* Status indicating an error */
 if (reader_state.dwEventState & SCARD_STATE_IGNORE)
 {
 printf("Ooops, the reader must be ignored?\n");
 } else
 if (reader_state.dwEventState & SCARD_STATE_UNKNOWN)
 {
 printf("Ooops, the reader doesn’t exists?\n");
 } else
 if (reader_state.dwEventState & SCARD_STATE_UNAVAILABLE)
 {
 printf("Ooops, the reader has just been removed?\n");
 } else
 /* Normal status */
 if (reader_state.dwEventState & SCARD_STATE_PRESENT)
 {
 printf("There is a card in the reader\n");
 if (reader_state.dwEventState & SCARD_STATE_MUTE)
 {
 printf("The card is mute\n");
 } else
 if (reader_state.dwEventState & SCARD_STATE_IN_USE)
 {
 printf("The card is already used by another application\n");
 } else
 {
 printf("The card is available!\n");
 return TRUE;
 }
 } else
 {
 printf("No card in the reader\n");
 }
 return FALSE;
}

Illustration 19: Basic implementation of SCardGetStatusChange

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 81 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.5. Connect to the card
The SCardConnect function opens a logical communication channel between the
application and the card contained by a specific coupler.
LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT DWORD pdwActiveProtocol);

Where:

 hContext is the pointer you got as output to SCardEstablishContext,

 szReader is the name of the coupler,

 dwShareMode shall be set to SCARD_SHARE_EXCLUSIVE for convenience,

 dwPreferredProtocols shall be set to SCARD_PROTOCOL_T0|
SCARD_PROTOCOL_T1 (logical OR) to let the coupler (or driver) decide which
protocol is the best for card communication,

 phCard is a pointer to a SCARDHANDLE, that will hold the logical channel’s
handle after a successful call,

 pdwActiveProtocol is a pointer to a DWORD that will tell which protocol has
been selected.

SCARDHANDLE is an opaque handle. With a non-C/C++ language, use a generic
pointer (System.IntPtr on .NET). This makes phCard a pointer to a generic pointer
(ref System.IntPtr on .NET).

 In a multi-threaded application, it is a bad idea to share the hCard handle among
different threads.

If the connection channel has been successfully opened, the function returns
SCARD_S_SUCCESS; *phCard is populated with the channel’s handle, and
pdwActiveProtocol is populated with the transport protocol that has been selected
by the coupler (or driver). It is either

 SCARD_PROTOCOL_T0 : for ISO/IEC 7816-3 T=0

 SCARD_PROTOCOL_T1 : for ISO/IEC 7816-3 T=1, ISO/IEC 14443-4 (because
the contactless block protocol “T=CL” is very close to T=1), and for all wired-
logic contactless cards (because the coupler’s embedded APDU- Processor
behaves as a T=1 card).

If there is no card in the coupler, the function returns SCARD_E_NO_SMARTCARD. If
the card is already used by another application, it returns

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 82 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

SCARD_E_SHARING_VIOLATION. Of course other error codes are also possible in case
a technical error occurs.

Refer to paragraph 7.4 for a few information regarding the other possible error codes
and their understanding.

 javax.smartcardio implements SCardConnect and the hCard as a Card object,
returned by the CardTerminal.connect(String protocol) method, and the subsequent
communication channel as a CardChannel channel..

SpringCard.PCSC implements the communication channel as a SCardChannel
object, the implementation of SCardConnect being the SCardChannel.Connect()
method.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 83 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.6. Send commands to the card – and receive its responses
The SCardTransmit function sends a command (C-APDU) to the smartcard, expecting
to receive back a response (R-APDU).
LONG SCardTransmit(IN SCARDHANDLE hCard,
 IN LPCSCARD_IO_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 OUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 IN OUT LPDWORD pcbRecvLength);

Where:

 hCard is the handle to the card channel that you got as output to
SCardConnect,

 pbSendBuffer is the C-APDU, an array of bytes,

 cbSendLength is the number of bytes of pbSendBuffer,

 pbRecvBuffer is the R-APDU, an array of bytes, that must be allocated by the
caller,

 pcbRecvLength is a pointer to the length of the pbRecvBuffer array. On input,
the caller application sets the pointed value to the size of the array. On
output, the library tells how many bytes have been returned by the card (the
function returns SCARD_E_INSUFFICIENT_BUFFER if the response does not fit
in the array).

You must have noticed that we have set apart the pioSendPci and pioRecvPci
parameters. They are mandatory parameters, but not really significant for the
developer. Use SCARD_PCI_T0 if the card uses the T=0 protocol, or SCARD_PCI_T1
for T=1 (check the value returned in pdwActiveProtocol by SCardConnect, to know
the protocol cf paragraph 5.5).

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 84 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Non-C/C++ languages are not able to access directly the SCARD_PCI_T0 and
SCARD_PCI_T1 symbols, that are defined as extern variables in winscard.h, and
resolved at link-time to some symbols coming from the PC/SC dynamically loadable
library.

Instead, the non-C/C++ language must use a specific system call to get explicitly the
address of these symbols at run-time (GetProcAddress on Windows, dlsym on UNIX
systems).

 javax.smartcardio implements SCardTransmit as CardChannel.transmit(...)
method.

SpringCard.PCSC implements SCardTransmit as SCardChannel.Transmit(...)
method.

We use the (…) to denote that, in both languages, there are a few overloads for the
transmit or Transmit methods, allowing the developer to use either raw array of
bytes, or higher level C-APDU and R-APDU objects.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 85 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.7. Retrieve a coupler’s (or driver’s) meta-data
Use the SCardGetAttrib function to read one of the coupler’s or driver’s meta-data.
This is particularly useful to retrieve the coupler’s serial number, as shown in the
sample source code.
LONG SCardGetAttrib(IN SCARDHANDLE hCard,
 IN DWORD dwAttrId,
 OUT LPBYTE pbAttr,
 IN OUT LPDWORD pcbAttrLength);

Where:

 hCard is the handle to the card channel that you got as output to
SCardConnect. Note that you may retrieve the meta-data of a coupler even
when there’s no card in it. In this case, you must call SCardConnect specifying
dwShareMode=SCARD_SHARE_DIRECT and dwPreferredProtocols=0. The
hCard that is returned in this case is not the handle of a card channel, but a
specific handle giving a direct access to the coupler.

 dwAttrId is the attribute you want to get. A complete list of the allowed
values is documented by Microsoft. For instance, the symbolic value
SCARD_ATTR_IFD_SERIAL_NO returns the coupler’s serial number, and
SCARD_ATTR_VENDOR_IFD_VERSION its firmware version.

 pbAttr is the buffer to receive the response; it must be allocated by the caller,

 pcbAttrLength is a pointer to the length of the pbAttr array. On input, the
caller application sets the pointed value to the size of the array. On output,
the library tells how many bytes have been returned by the card (the
function returns SCARD_E_INSUFFICIENT_BUFFER if the response does not fit
in the array).

 SpringCard.PCSC implements this function as SCardChannel.GetAttrib.
SCardReader.GetAttrib is also possible, and creates a temporary connection to the
coupler.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 86 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.8. How to retrieve the card’s ATR?
There are three ways to know the ATR of the smartcard that is in the coupler:

1. Call SCardGetAttrib with dwAttrId=SCARD_ATTR_ATR_STRING. In this case,
the hCard must be either an actual handle to a card, or a handle giving direct
access to the coupler,

2. Call SCardGetStatusChange and retrive the ATR in the SCARD_READERSTATE
structure when the flags say that a card is present (dwEventState &
SCARD_STATE_PRESENT),

3. Call SCardStatus with hCard being an actual handle to the card.

5.8.1. SCardGetAttrib method

To retrive the card’s ATR, invoke SCardGetAttrib as follow:

/* This function assumes that hCard has already been set by a */
/* successful call to SCardConnect */
BOOL get_card_atr1(SCARDHANDLE hCard, BYTE abAtr[], DWORD dwMaxAtrSz,
 DWORD *dwActualAtrSz)
{
 LONG rc;
 DWORD dwAtrSz = dwMaxAtrSz;

 rc = SCardGetAttrib(hCard,
 SCARD_ATTR_STRING,
 abAtr,
 dwAtrSz);
 if (rc != SCARD_S_SUCCESS)
 {
 printf(" SCardGetAttrib(ATR) error %08lX\n", rc);
 return FALSE;
 }

 if (dwActualAtrSz != NULL)
 *dwActualAtrSz = dwAtrSz;

 return TRUE;
}

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 87 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.8.2. SCardGetStatusChange method

To retrive the card’s ATR, invoke SCardGetStatusChange as follow:

BOOL get_card_atr2(SCARDCONTEXT *hContext, const char *reader_name,
 BYTE abAtr[],
 DWORD dwMaxAtrSz,
 DWORD *dwActualAtrSz)
{
 SCARD_READERSTATE reader_state;
 LONG rc;

 memset(&reader_state, 0, sizeof(reader_state));
 reader_state.szReader = reader_name;
 reader_state.dwCurrentState = SCARD_STATE_UNAWARE; /* "Don’t know" */

 rc = SCardGetStatusChange(hContext, 0, &reader_state, 1);
 if (rc != SCARD_S_SUCCESS)
 {
 printf("SCardGetStatusChange error %08lX\n", rc);
 return FALSE;
 }

 /* Status indicating an error */
 if (!(reader_state.dwEventState & SCARD_STATE_IGNORE)
 && (reader_state.dwEventState & SCARD_STATE_PRESENT))
 {
 if (!(reader_state.dwEventState & SCARD_STATE_MUTE))
 {
 if ((abAtr != NULL) && (dwMaxAtrSz <= reader_state.cbAtr))
 memcpy(abAtr, reader_state.rgbAtr, reader_state.cbAtr);
 if (dwActualAtrSz != NULL)
 *dwActualAtrSz = reader_state.cbAtr;
 return TRUE;
 }
 }
 return FALSE;
}

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 88 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.8.3. SCardStatus method

To retrive the card’s ATR, invoke SCardGetStatus as follow:

/* This function assumes that hCard has already been set by a */
/* successful call to SCardConnect */
BOOL get_card_atr3(SCARDHANDLE hCard, BYTE abAtr[], DWORD dwMaxAtrSz,
 DWORD *dwActualAtrSz)
{
 LONG rc;
 DWORD dwAtrSz = dwMaxAtrSz;

 rc = SCardStatus(hCard,
 NULL, NULL,

 abAtr,
 dwAtrSz);
 if (rc != SCARD_S_SUCCESS)
 {
 printf(" SCardGetAttrib(ATR) error %08lX\n", rc);
 return FALSE;
 }

 if (dwActualAtrSz != NULL)
 *dwActualAtrSz = dwAtrSz;

 return TRUE;
}

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 89 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.9. Disconnect from the card
The SCardDisconnect function closes the logical communication channel that has
been opened by SCardConnect.
LONG SCardDisconnect(IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

Where:

 hCard is the SCARDHANDLE, that has been opened by SCardConnect.
Following the call to SCardDisconnect, this handle becomes invalid, and shall
not be used anymore;

 dwDisposition tells the coupler whether it should leave the card powered
(SCARD_LEAVE_CARD), reset the card (SCARD_RESET_CARD) or unpower the
card (SCARD_UNPOWER_CARD). In contact couplers used in ATMs or
automatic pay stations, it is also possible to drive the coupler’s motor to send
back the card to the user (SCARD_EJECT_CARD) or to swallow it
(SCARD_CONFISCATE_CARD). This is obviously not possible with a contactless
coupler, nor with desktop contact couplers.

 Leaving the card in the powered state without resetting it (SCARD_LEAVE_CARD)
opens potential security vulnerabilities: if the application uses external or mutual
authentications, or even only sends a PIN to the card, it gains an access to some of
the card’s protected resources. This access should always be closed when the
application releases the card.

Otherwise, any other – possibly rogue – application may access the card’s protected
resources too.

For contactless cards SCARD_UNPOWER_CARD does not actually removes the power
from the card, because the RF field must remain active to detect when the card is
physically removed from the proximity of the coupler’s antenna, or when another
card arrives.

This is not the case for a contact coupler, where the VCC line may actually go
inactive, since the removal of the card will be detected by the presence switch.

 javax.smartcardio implements SCardDisconnect through the
Card.disconnect(boolean reset) method. Setting the reset parameter to true is the
same as SCARD_RESET_CARD and to false the same as SCARD_LEAVE_CARD.

With SpringCard.PCSC use the SCardChannel.Disconnect() method or one of its
overloads.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 90 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

5.10. Release the PC/SC context
The last step of using the PC/SC API is calling the SCardReleaseContext function. This
function closes the communication channel with the middleware and ensures that
all allocated resources are freed correctly.

 In a multi-threaded application, every thread (that calls functions from the PC/SC
API) shall close its own context when terminating.

LONG SCardReleaseContext(SCARDCONTEXT hContext);

 In both javax.smartcardio and SpringCard.PCSC, the SCardReleaseContext
function is implicitly called when the PC/SC objects are free by the garbage collector.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 91 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6. Using contactless cards with PC/SC

6.1. Introduction
By design, the standards and the PC/SC specification make it possible to operate an
ISO/IEC 7816-4 smartcard without even noticing whether it used the T=1 contact
transport protocol or the “T=CL” contactless transport protocol.

Unfortunately, when the contactless card is not compliant with ISO/IEC 7816-4 –
which is obviously the case of RFID labels, most NFC Tags and most entry-level
contactless cards – things are not that easy. The coupler’s embedded APDU
Processor exposes the card’s read and write functions through 7816-4 APDUs, but
this is not straightforward.

More than that, even the most classical 7816-4 smartcard may require some added
precautions or efforts when operated over ISO/IEC 14443.

Indeed, for the user is free to remove the card from the RF field at any moment, the
likelihood of a fatal error during the transaction is lots higher in contactless mode
than in contact mode. And, even if the transaction goes to the end, there is also a
strong probability that the user removes the card and inserts it again – and in most
situations this shall not start another transaction34.

The role of this chapter is to expose a few ideas that could dramatically increase the
user experience when correctly implemented by the application in the terminal.

6.2. Connecting to a contactless card

6.2.1. Protocol

We will see in next paragraph (6.4) that all contactless cards, either a wired-logic
card or an actual smartcard, has an ATR that tells the PC/SC middleware and stack
that the card does support both the T=0 and the T=1 protocols (TD1 and TD2 bytes
of the ATR).

Since the card is said to support the two protocols, which one shall be selected by
the application when calling SCardConnect?

34 Imagine the situation where you are boarding a bus with a friend and intend to pay the two travels with your contactless
transport card. You have to place the card in front of the validator twice to debit two tickets. If you remove the card too
early, the validator instructs you present the card again – but it shall not start debiting a third ticket. And if you keep the card
in front of the validator, or even if you are shivering in front of it, it shall also not debit a third ticket. In other words, an ideal
validator’s application should be able to make the difference, only by software, between the insert/remove/insert again
sequence and the insert/shiver/shiver/shiver… sequence.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 92 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

The answer is clear: the application shall always specify to use T=1 only, for (at least)
two good reasons:

 The ISO/IEC 14443-4 protocol is very close to T=1, and the card is allowed to
return some data after any instruction (there is no difference between case 3
and case 4 APDU: the LE byte is optional in contactless and GET RESPONSE is
not implemented). But if the card is connected in T=0 and returns some data
after a case 3 APDU, this will be considered as a fatal protocol violation by the
PC/SC middleware, and the answer will be lost.

 The same applies for the coupler’s embedded APDU Processor, that is
responsible for exposing wired-logic cards through ISO/IEC 7816-4
instructions. It uses the T=1 protocol only and makes no difference between
a case 3 and a case 4 APDU, which is considered to be a fatal violation of the
T=0 protocol by the PC/SC middleware.

6.2.2. Share mode

There is another parameter that the application is responsible to choose when
calling SCardConnect: dwShareMode. This parameters tells whether the application
accepts to share the card with another application, or not.

It is never a good idea to share a smartcard – nor any security-sensitive resource.

 If the application uses external or mutual authentications, or even only sends a PIN
to the card, it gains an access to some of the card’s protected resources. If the
application accepts to share the card, any other – possibly rogue – application may
access the card’s protected resources too.

As a consequence, setting dwShareMode to SCARD_SHARE_EXCLUSIVE is the normal
behavior.

But this has a side effect: if another application is already connected to the card, the
call to SCardConnect in your application will fail with error
SCARD_E_SHARING_VIOLATION. And, on a standard Windows computer, the system
will always be the first to connect to the card, in order to try and recognize it, with
the aim to find it suitable for one of its PC/SC helper libraries or smartcard mini-
driver.

Therefore, your application must be designed to recover nicely from a sharing
violation, without any annoyance for the user.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 93 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.2.3. Sample code

As a conclusion of the two above paragraphs, a contactless card shall always be
connected as shown below:

6.2.3.1. SCardConnect for a contactless card – C example

/* This function assumes that hContext has already been set by a */
/* successful call to SCardEstablishContext */
BOOL connect(SCARDCONTEXT hContext, char *szReader)
{
 LONG rc;
 DWORD dwProtocol;
 int retry = 5;

 for (;;)
 {
 rc = SCardConnect(hContext,
 szReader,
 SCARD_SHARE_EXCLUSIVE,
 SCARD_PROTOCOL_T1,
 &hCard,
 &dwProtocol);

 if (rc == SCARD_S_SUCCESS)
 {
 /* We are connected, great */
 return TRUE;
 }

 if ((rc == SCARD_E_SHARING_VIOLATION) && (retry-- > 0))
 {
 /* The card is already in use, let's wait a little before retrying */
 Sleep(250); // usleep(250000) on Unix
 } else
 {
 break;
 }
 }

 printf("An error has occured");
 return FALSE;
}

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 94 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.2.3.2. SCardConnect for a contactless card – C# example

public SCardChannel channel;

void connect(string readerName)
{
 SCardReader reader = new SCardReader(readerName);

 channel = new SCardChannel(reader);
 channel.ShareMode = SCARD.SHARE_EXCLUSIVE;
 channel.Protocol = SCARD.PROTOCOL_T1;

 int retry = 5;

 for (;;)
 {
 if (channel.Connect())
 {
 /* We are connected, great */
 return;
 }

 if ((channel.LastError == SCARD.E_SHARING_VIOLATION) && (retry-- > 0))
 {
 /* The card is already in use, let's wait a little before retrying */
 System.Threading.Thread.Sleep(250);
 } else
 {
 break;
 }
 }

 throw new Exception("An error has occured");
}

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 95 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.3. Retrieving the card’s protocol level ID

6.3.1. Motivation

Whatever the low-level protocol in use (ISO/IEC 14443 A or B, ISO/IEC 15693, FeliCa,
or any current vendor-specific implementation on top of a 13.56MHz carrier), the
card transmits an ID in response to the coupler’s lookup frames. This is the card’s
protocol level ID.

 A lot of legacy applications use the protocol level ID of wired-logic contactless
cards are their primary source of information. This is a bad design, because
the protocol level ID, being (of course) a publicly-readable data, is easy to
clone on a card emulator, or even in an other card with “hacking” features35.
Yet even new applications may have to re-use an existing architecture,
whatever their design flaws,

 Even if it is not the primary source of information, the protocol level ID is
frequently one of the key data. For instance, the data stored in the card may
include a digital signature computed over this ID, or the card’s authentication
key(s) may be computed from a root key and this ID,

 There is one more motivation of retrieving the card’s protocol level ID, and
maybe it is the most important with the user experience in mind: this ID tells
the application whether it is ready to process the same card again, or the
user has inserted another. This is the basic feature to be able to restart an
interrupted transaction efficiently, or to prevent processing the same card
twice.

 There are nowadays a lot of inexpensive RFID/NFC “security investigation tools” that
allows to emulate virtually any PICC or VICC36, including cloning the ID and all the
data that the card contents.

Designing a secure solution starts by choosing a card chip providing strong security
features (at least cryptographic-level authentication and message digest, possibly
ciphered communication) and using them correctly.

35 For instance, it is easy to find on the web so-called “MIFARE Chinese Magic Cards”. The chip is a clone of NXP’s MIFARE
Classic IC, but its protocol level ID could be written freely. This card is a scarecrow for a lots of legacy access control systems.

36 Google for: ProxMark iii and Chameleon RFID.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 96 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.3.2. ID name, length and construction among the standards

The protocol level ID has different length and construction rules among the
contactless standards. They are even name differently! This is summarized in table 3.

Standard Name of the ID Length Rules / remark

ISO/IEC 14443 A UID
(Unique ID)

10 B
7 B
4 B

7 and 10-B UIDs start with a 1-B
manufacturer code
No rule for 4-B UIDs (only a few
reserved values)

ISO/IEC 14443 B PUPI
(Pseudo-Unique ID)

4 B No rule. No assumption shall be made
over the uniqueness of the ID

ISO/IEC 15693 UID
(Unique ID)

8 B Ending with a 1-B manufacturer code
and constant value h0E (see the notice
below).

FeliCa IDm
(Manufacture ID)

8 B

Innovatron DIV (Diversifier) 4 B 4 low-order bytes of the 8-B card’s serial
number

Table 3: Understanding of the protocol level ID for the different standards

 The ISO/IEC 15693 standard says that the UID’s most significant byte (MSB) is h0E.
Then comes the manufacturer code. The same standard shows in another
paragraph that the UID is transmitted LSB-first (h0E is the last byte sent by the card).

But the PC/SC standard states that the bytes of the UID shall be understood in the
order they are transmitted over the RF channel (MSB first). Following the PC/SC
convention, any PC/SC compliant coupler returns ISO/IEC 15693 UIDs with h0E at the
end, not at the beginning.

This is only a matter of convention, but it could be very disturbing for the
beginners…

There is a similar problem with ISO/IEC 14443 A short (4 bytes) IDs: both PC/SC and
ISO say that the 1st byte (uid0) comes first. But in all the old MIFARE application
notes the inverse convention is used, the last byte (uid3) being shown first.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 97 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Both ISO/IEC 14443 A and ISO/IEC 15693 IDs include a manufacturer code. Table 4
below is an excerpt of the listing of IC Manufacturers, maintained by ISO/IEC
JTC1/SC17. The complete listing is available on the SC17 website, under title
“Register of IC Manufacturers”:

I SO/IEC JTC1/SC17 public document listing

Register of IC Manufacturers (warning: the URL is likely to change everytime a new
version is released)

ICM IC Manufacturer according to [ISO7816-6]

h02 ST Microelectronics

h04 Philips Semiconductors → NXP

h05 Infineon (formerly Siemens)

h07 Texas Instrument

h12 Inside Technology

h15 Atmel → Microchip

h16 EM Microelectronic Marin

Table 4: List of manufacturer codes (partial)

6.3.3. Are ISO/IEC 14443 A 4-byte UIDs really unique?

When the MIFARE card has been launched in the late 1990s with a 4-byte UID,
people were certainly thinking that it would take decades before the 4 billion of
possible IDs were exhausted. But it took only a little more than one decade, actually.

Nowadays, applications should treat ISO/IEC 14443 type A 4-byte UID very carefully,
because new MIFARE cards are likely to re-use UIDs that have already been issued in
the past.

6.3.4. Random IDs

Cards with a random protocol level ID are more and more present in the field.

Firstly, in some countries the concerns regarding the privacy of RFID and related
technologies are getting stronger and stronger. In new application designs, all user
sensitive data is protected by a mutual authentication and a secure (ciphered)
communication channel. Configuring the card with a random protocol level ID
suppresses the last “publicly readable” data from the card.

Secondly, an increasing number of smartphones feature the NFC card emulation
mode. Since the smartphone is able to emulate more than one card at once
(payment, transport, access control…) there is technically speaking no constant

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 98 / 128

http://isotc.iso.org/livelink/livelink/10432471/ISO_IEC_JTC1_SC17_Standing_Document_5_Register_of_IC_Manufacturers.pdf?func=doc.Fetch&nodeid=10432471&viewType=1
http://isotc.iso.org/livelink/livelink?func=ll&objId=8915579&objAction=browse&viewType=1
http://isotc.iso.org/livelink/livelink?func=ll&objId=8915579&objAction=browse&viewType=1

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

protocol level ID to be exposed to the couplers. Given the privacy concerns, it has
been chosen to implement only random IDs in all today’s smartphones.

In ISO/IEC 14443 A, a random ID is a 4-B UID with the first byte set to h08.

In ISO/IEC 14443 B, any PUPI value could potentially be random.

The standards say that the card shall not change its ID while the RF field remain
active (in other words, the card should not generate a new random ID until it is
explicitly taken away from the coupler, and inserted again). Unfortunately, due to the
intrinsic weakness of the communication link – including the movements from the
user – it is frequent that the coupler “sees” a card changing its ID after a
communication error. In the case of a smartphone, it may as well change its protocol
(from ISO/IEC 14443 A to B, or from B to A) yet expose the very same applications
and data.

Therefore, the application in the terminal must be adapted to identify the card based
on its private data, and not to rely on the protocol level data anymore.

6.3.5. The GET DATA (ID) instruction

The coupler’s embedded APDU Processor handles all instructions with the CLA byte
set to hFF. Using the INS = hCA (GET DATA) and P1,P2 = h0000 it is possible to retrieve
the card’s protocol level identifier.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 99 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.3.5.1. GET DATA (ID) – C example

/* The hCard handle has been connected in § 6.2.3.1 */

const BYTE get_data_command[] = { 0xFF, 0xCA, 0x00, 0x00, 0x00 };
BYTE response[256];
DWORD length = sizeof(response);
LONG rc;

rc = SCardTransmit(hCard,
 SCARD_PCI_T1,
 get_data_command,
 sizeof(get_data_command),
 NULL,
 response,
 &length);

if (rc != SCARD_S_SUCCESS)
 /* ... an error has occured – exit here */

if (length < 2)
 /* ... response is not correctly formatted (no SW1 SW2) – exit here */

if ((response[length-2] != 0x90) || (response[length-1] != 0x00))
 /* ... response denotes an error (SW1 SW2 != 90 00) – exit here */

printf("ID=");
for (int i=0; i<length-2; i++)
 printf("%02X ", response[i]);
printf("\n");

6.3.5.2. GET DATA (ID) – C# example

/* The channel object has been created and connected in § 6.2.3.2 */

RAPDU response = channel.Transmit(new CAPDU(0xFF, 0xCA, 0x00, 0x00, 0x00));

if ((response == null) || (response.data == null))
 throw new Exception("An error has occured");

Console.WriteLine("ID=" + response.data.AsString(" "));

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 100 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.4. Recognizing the contactless card type
Some applications have to process different types of cards. Their first step is to
recognize the card family, before branching to the appropriate workflow.

There are 2 ways of recognizing the card family:

 Recognize, or analyze the card’s ATR. The ATR is the first frame sent over the
serial line for a contact card, but for a contactless card, the ATR is a “virtual”
frame that has to be constructed by the coupler; how is this ATR constructed
is an important part of the PC/SC specification. Retrieving the ATR has already
been dealt with in § 5.8. The understanding of the ATR’s data is the subject of
the next paragraphs 6.4.1 and 6.4.2,

 Connect to the card at first (SCardConnect) and reads its protocol data by
sending the appropriate instruction to the embedded APDU Processor – and
processing its response. This is the subject of paragraph 6.4.3.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 101 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.4.1. The ATR of a wired-logic contactless card

The ATR of a wired-logic contactless card (ISO/IEC 14443 below layer 4, ISO/IEC
15693, etc) is constructed as follow:

Byte # Name Value Description

0 TS h3B Direct convention

1 T0 h8F Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to
follow
Lower nibble is the number of historical bytes (15)

2 TD1 h80 Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to
follow
Lower nibble 0 means: protocol T=0

3 TD2 h01 Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3
Lower nibble 1 means: protocol T=1

4 h80

5 h4F Application identifier presence indicator

6 h0C Length to follow (12 bytes)

7 hA0 Registered Application Provider Identifier
A0 00 00 03 06 is for PC/SC workgroup8 h00

9 h00

10 h03

11 h06

12 PIX.SS: Card protocol (table 6)

13 PIX.NN: Card name (table 7)

14

15 h00 RFU

16 h00

17 h00

18 h00

19 TCK Checksum (XOR of bytes 1 to 18)

Table 5: ATR of a wired-logic contactless card

The application could use PIX.SS and PIX.NN to recognize the card family – with some
precautions.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 102 / 128

H
is

to
ri

ca
l B

yt
es

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.4.1.1. Protocol

The underlying standard is provided in the PIX.SS byte.

b7 b6 b5 b4 b3 b2 b1 b0 Value Description

0 0 0 0 0 0 0 0 h00 No information given

0 0 0 0 0 0 0 1 h01 ISO/IEC 14443 A, level 1

0 0 0 0 0 0 1 0 h02 ISO/IEC 14443 A, level 2

0 0 0 0 0 0 1 1 h03 ISO/IEC 14443 A, level 3 or 4 (and Mifare)
ISO/IEC 18092 @ 106 kbit/s “NFC-A”

0 0 0 0 0 1 0 1 h05 ISO/IEC 14443 B, level 1

0 0 0 0 0 1 1 0 h06 ISO/IEC 14443 B, level 2

0 0 0 0 0 1 1 1 h07 ISO/IEC 14443 B, level 3 or 4

0 0 0 0 1 0 0 1 h09 ISO/IEC 15693, level 2

0 0 0 0 1 0 1 1 h0B ISO/IEC 15693, level 3

0 0 0 1 0 0 0 1 h11 JIS:X6319-4 (and FeliCa)
ISO/IEC 18092 @ 212 or 424 kbit/s “NFC-F”

Table 6: Values for the ATR's PIX.SS byte

6.4.1.2. Card name

The card name is provided in the PIX.NN word.

 The PIX.NN is not a technical data coming from the card, but a data constructed by
the coupler based on the few information it could gather from the card. It is not
always possible to recognize one card from a card that provides more-or-less the
same features (typical example is NFC Forum type 2 Tags). More than that, new
cards appear on the market regularly, and a coupler running an “old” firmware is
likely to identify it as an older card.

PIX.NN Card name

h00 h00 Unrecognised card37

h00 h01 NXP Mifare Classic 1k

h00 h02 NXP Mifare Classic 4k

37 By default, SpringCard Couplers don’t use the “Unrecognised card” value for PIX.NN, but one of the proprietary values
defined at the end of the table. It is possible to revert to the PC/SC-defined mode by loading a custom configuration in the
Coupler.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 103 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

PIX.NN Card name

h00 h03 NXP Mifare UltraLight
NFC Forum Type 2 Tag with a capacity <= 64 bytes

h00 h06 ST Micro Electronics SR176

h00 h07 ST Micro Electronics SRI4K, SRIX4K, SRIX512, SRI512, SRT512

h00 h0A Atmel AT88SC0808CRF

h00 h0B Atmel AT88SC1616CRF

h00 h0C Atmel AT88SC3216CRF

h00 h0D Atmel AT88SC6416CRF

h00 h12 Texas Instruments TAG IT

h00 h13 ST Micro Electronics LRI512

h00 h14 NXP ICODE SLI

h00 h17 Inside Secure PicoPass 2K

h00 h18 Inside Secure PicoPass 2KS

h00 h19 Inside Secure PicoPass 16K

h00 h1A Inside Secure PicoPass 16KS

h00 h1B Inside Secure PicoPass 16K (8x2)

h00 h1C Inside Secure PicoPass 16KS (8x2)

h00 h1D Inside Secure PicoPass 32KS (16+16)

h00 h1E Inside Secure PicoPass 32KS (16+8x2)

h00 h1F Inside Secure PicoPass 32KS (8x2+16)

h00 h20 Inside Secure PicoPass 32KS (8x2+8x2)

h00 h21 ST Micro Electronics LRI64

h00 h24 ST Micro Electronics LR12

h00 h25 ST Micro Electronics LRI128

h00 h26 NXP Mifare Mini

h00 h2F Broadcom Jewel

h00 h30 Broadcom Topaz
NFC Forum Type 1 Tag

h00 h34 Atmel AT88RF04C

h00 h35 NXP ICODE SL2

h00 h36 NXP Mifare Plus 2K SL1

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 104 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

PIX.NN Card name

h00 h37 NXP Mifare Plus 4K SL1

h00 h38 NXP Mifare Plus 2K SL2

h00 h39 NXP Mifare Plus 4K SL2

h00 h3A NXP Mifare UltraLight C, NXP NTAG
NFC Forum Type 2 Tag with a capacity > 64 bytes

h00 h3B FeliCa
NFC Forum Type 3 Tag

h00 h3D NXP Mifare UltraLight EV1

The values below are specific to SpringCard (not in the PC/SC specification)

hFF hA0 Generic/unknown 14443-A card

hFF hA1 ThinFilm RF Barcode

hFF hB0 Generic/unknown 14443-B card

hFF hB1 ASK CTS 256B

hFF hB2 ASK CTS 512B

hFF hB3 ST Micro Electronics SRI 4K

hFF hB4 ST Micro Electronics SRI X512

hFF hB5 ST Micro Electronics SRI 512

hFF hB6 ST Micro Electronics SRT 512

hFF hB7 Inside Contactless PicoTag/PicoPass

hFF hB8 Generic Atmel AT88SC / AT88RF card

hFF hC0 Calypso card using the Innovatron protocol

hFF hD0 Generic ISO/IEC 15693 from unknown manufacturer

hFF hD1 Generic ISO/IEC 15693 from EM Marin

hFF hD2 Generic ISO/IEC 15693 from ST Micro Electronics, block number on 8 bits

hFF hD3 Generic ISO/IEC 15693 from ST Micro Electronics, block number on 16 bits

hFF hD5 Generic ISO/IEC 15693 from Infineon

hFF hD6 EM MicroElectronic Marin EM4134 chip

hFF hFF Virtual card (test only)

Table 7: Values for the ATR's PIX.NN word

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 105 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.4.2. The ATR of a contactless smartcard

The ATR of a contactless smartcard (ISO/IEC 14443 up to layer 4) is constructed as follow:

Byte # Name Value Description

0 TS h3B Direct convention

1 T0 h8n Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to
follow
Lower nibble (n) is the number of historical bytes (0 to 15)

2 TD1 h80 Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to
follow
Lower nibble 0 means: protocol T=0

3 TD2 h01 Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3
Lower nibble 1 means: protocol T=1

4 to
3+n

h80 Historical bytes, providing the protocol data returned by the
PICC during activation:

• ISO/IEC 14443-4 type A: the historical bytes from the
ATS response

• ISO/IEC 14443-4 type B: the historical bytes from the
ATTRIB response

4+n TCK Checksum (XOR of bytes 1 to 3+n)

Table 8: ATR of a contactless smartcard

It shall be noticed that there is no explicit flag saying that the ATR actually belongs to
a contactless smartcard. It is absolutely possible for a contact card to have the very
same ATR as a contactless smartcard, yet the application is able to know, or at least
to guess (from the coupler name or even from the hardware context) whether the
smartcard is contact or contactless.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 106 / 128

H
is

to
ri

ca
l B

yt
es

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.4.3. Obtaining technical data through the GET DATA instruction

 This part is specific to SpringCard (not in the PC/SC specification)

The coupler’s embedded APDU Processor handles all instructions with the CLA byte
set to hFF. Using the INS = hCA (GET DATA) it is possible to retrieve most of the
technical information used by the coupler to communicate with the card (including
the card’s serial number as shown in § 6.3).

The table below lists the P1,P2 values that are supported by SpringCard couplers.

CLA INS P1 P2 LE Returns

hFF hCA hF1 h00 h00 3 bytes: PIX.SS (byte 0) and PIX.NN (bytes 1 and 2)

hFF hCA hF1 h01 h00 1 byte: NFC Forum Tag type:
- h00 → not compliant with any NFC Forum Tag specification
- h01 → compliant with NFC Forum Type 1 Tag at protocol level
- h02 → compliant with NFC Forum Type 2 Tag at protocol level
- h03 → compliant with NFC Forum Type 3 Tag at protocol level
- h05 → compliant with NFC Forum Type 5 Tag at protocol level
NB: Type 4 Tags are ISO/IEC 7816-4 smartcards, compliance should
be tested at application level

hFF hCA hFC h00 h00 ISO/IEC 14443 communication indexes on 2 bytes: DSI (byte 0) and
DRI (byte 1)

hFF hCA hFC h01 h00 Actual communication bitrate card → coupler (2 bytes, MSB first,
expressed in kbit/s)

hFF hCA hFC h02 h00 Actual communication bitrate coupler → card (2 bytes, MSB first,
expressed in kbit/s)

Table 9: GET DATA: P1,P2 specific values

6.5. Exchanging APDUs with a contactless smartcard
Exchanging APDUs with smartcards is the basic feature of PC/SC and is done using
the SCardTransmit instruction (§ 5.6).

There is not much to add here, provided that the card’s commands (and responses)
are compliant with the ISO/IEC 7816-4 format (CLA, INS, P1, P2, Data for command,
Data, SW1, SW2 for response). Otherwise, the coupler and the card will be perfectly
able to communicate, but the PC/SC middleware is likely to report a protocol
violation. Paragraph 6.5.2 shows how to overcome this limitation.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 107 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.5.1. Case of a smartcard fully compliant with ISO/IEC 7816-4

This is the standard situation; there is no difference between a contactless smartcard
and a contact smartcard. The following examples show a SELECT APPLICATION over
the NFC Forum type 4 Tag application.

6.5.1.1. APDU exchange – C example

/* The hCard handle has been connected in § 6.2.3.1 */

const BYTE select_nfc_app_command[] = {
 0x00, 0xA4, 0x04, 0x00, 0x07, /* CLA, INS=SELECT, P1, P2, Lc=7 */
 0xD2, 0x76, 0x00, 0x00, 0x85, 0x01, 0x01, /* Application name */
 0x00 /* Le */
};
BYTE response[256];
DWORD length = sizeof(response);
LONG rc;

rc = SCardTransmit(hCard,
 SCARD_PCI_T1,
 select_nfc_app_command,
 sizeof(select_nfc_app_command),
 NULL,
 response,
 &length);

if (rc != SCARD_S_SUCCESS)
 /* ... an error has occured – exit here */

if (length < 2)
 /* ... response is not correctly formatted (no SW1 SW2) – exit here */

if ((response[length-2] != 0x90) || (response[length-1] != 0x00))
 /* ... response denotes an error (SW1 SW2 != 90 00) – exit here */

printf("NFC Forum type 4 Tag application selected!\n");

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 108 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.5.1.2. APDU exchange – C# example

/* The channel object has been created and connected in § 6.2.3.2 */

CardBuffer application_id = new CardBuffer("D2760000850101");
RAPDU response = channel.Transmit(new CAPDU(0x00, 0xA4, 0x04, 0x00,
 application_id.GetBytes(),
 0x00));

if (response == null)
 throw new Exception("An error has occured");

if (response.SW != 0x9000)
 throw new Exception("Status word is not 90 00");

Console.WriteLine("NFC Forum type 4 Tag application selected!");

6.5.2. Case of a smartcard having a custom APDU format

A few contactless smartcards, such as the NXP MIFARE Plus and the early version of
the NXP DESFire, use a vendor-specific format for commands and responses on top
of the ISO/IEC 14443-4 transport protocol.

For instance, the DESFire “GET VERSION” command is documented as follow:

Terminal Card

h60 →

← hAF <1st part of the version string>

hAF →

← hAF <2nd part of the version string>

hAF →

← h00 <3rd (and last) part of the version string>

Table 10: The DESFire GET VERSION command

This exchange is not compliant with ISO/IEC 7816-4 because:

 The command is on one byte only (and not CLA, INS, etc)

 The response does not end with a status word (SW1, SW2) with SW1 equal to
either h6x or h9x.

Therefore, the command shall be encapsulated in a standard-compliant APDU,
processed by the coupler’s embedded APDU Processor. In turn, the response will be
encapsulated accordingly. Doing so, the PC/SC middleware will not report any
protocol violation.

The ENCAPSULATE instruction uses CLA = hFF and INS = hFE.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 109 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.5.2.1. Encapsulated APDU exchange – C example

/* The hCard handle has been connected in § 6.2.3.1 */

const BYTE desfire_get_version_command[] = {
 0xFF, 0xFE, 0x00, 0x00, 0x01, /* CLA=embedded, INS=ENCAPSULATE, P1,P2, Lc=1 */
 0x60, /* Desfire get version */
 0x00 /* Le */
};
const BYTE desfire_next_part_command[] = {
 0xFF, 0xFE, 0x00, 0x00, 0x01, /* CLA=embedded, INS=ENCAPSULATE, P1,P2, Lc=1 */
 0xAF, /* Desfire get next part */
 0x00 /* Le */
};

BYTE version[256];
DWORD version_length = 0;

BYTE response[256];
DWORD length;
LONG rc;

/* First part */
/* ---------- */

length = sizeof(response);
rc = SCardTransmit(hCard,
 SCARD_PCI_T1,
 desfire_get_version_command,
 sizeof(desfire_get_version_command),
 NULL,
 response,
 &length);

if (rc != SCARD_S_SUCCESS)
 /* ... an error has occured – exit here */
if (length < 2)
 /* ... response is not correctly formatted (no SW1 SW2) – exit here */
if ((response[length-2] != 0x90) || (response[length-1] != 0x00))
 /* ... response denotes an error (SW1 SW2 != 90 00) – exit here */

if (response[0] != 0xAF)
 /* ... the Desfire card has returned an error – exit here */

// TODO: check bounds

memcpy(&version[version_length], &response[1], length – 3);
version_length += length – 3;

.../...

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 110 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

/* Next part */
/* ---------- */

length = sizeof(response);
rc = SCardTransmit(hCard,
 SCARD_PCI_T1,
 desfire_next_part_command,
 sizeof(desfire_get_version_command),
 NULL,
 response,
 &length);

// TODO: Check rc and SW - Same as above

if (response[0] != 0xAF)
 /* ... the Desfire card has returned an error – exit here */

// TODO: check bounds

memcpy(&version[version_length], &response[1], length – 3);
version_length += length – 3;

/* Last part */
/* ---------- */

length = sizeof(response);
rc = SCardTransmit(hCard,
 SCARD_PCI_T1,
 desfire_next_part_command,
 sizeof(desfire_get_version_command),
 NULL,
 response,
 &length);

// TODO: Check rc and SW - Same as above

if (response[0] != 0x00)
 /* ... the Desfire card has returned an error – exit here */

// TODO: check bounds

memcpy(&version[version_length], &response[1], length – 3);
version_length += length – 3;

printf("Desfire version=");
for (int i=0; i<version_length; i++)
 printf("%02X", version[i]);
printf("\n");

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 111 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.5.2.2. Encapsulated APDU exchange – C# example

/* The channel object has been created and connected in § 6.2.3.2 */

CardBuffer raw_cmd1 = new CardBuffer(0x60);
CardBuffer raw_cmd2_cmd3 = new CardBuffer(0xAF);
CardBuffer version = new CardBuffer();
RAPDU response;

response = channel.Transmit(new CAPDU(0xFF, 0xFE, 0x00, 0x00,
 raw_cmd1.GetBytes(),
 0x00));

if ((response == null) || (response.data == null) || response.SW != 0x9000)
 throw new Exception("Encapsulation or communication error");
if (response.data.GetByte(0) != 0xAF) /* First answer must start with AF */
 throw new Exception("Desfire error");

version.Append(response.data.GetBytes(1, response.data.Length – 1));

response = channel.Transmit(new CAPDU(0xFF, 0xFE, 0x00, 0x00,
 raw_cmd2_cmd3.GetBytes(),
 0x00));

if ((response == null) || (response.data == null) || response.SW != 0x9000)
 throw new Exception("Encapsulation or communication error");
if (response.data.GetByte(0) != 0xAF) /* Next answer must start with AF */
 throw new Exception("Desfire error");

version.Append(response.data.GetBytes(1, response.data.Length – 1));

response = channel.Transmit(new CAPDU(0xFF, 0xFE, 0x00, 0x00,
 raw_cmd2_cmd3.GetBytes(),
 0x00));

if ((response == null) || (response.data == null) || response.SW != 0x9000)
 throw new Exception("Encapsulation or communication error");
if (response.data.GetByte(0) != 0x00) /* Last answer must start with 00 */
 throw new Exception("Desfire error");

version.Append(response.data.GetBytes(1, response.data.Length – 1));

Console.WriteLine("Desfire version: " + version.AsString());

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 112 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.6. The embedded APDU Processor for wired-logic cards
Doc. PMD17182 is the reference guide for the embedded APDU Processor.

The paragraphs below give an overview of the features that are made available to
the host application through SCardTransmit calls.

6.6.1. Generic wired-logic card read/write instructions

The READ BINARY and UPDATE BINARY instructions map to the READ/WRITE
commands of most supported wired-logic cards:

 MIFARE Classic,

 NFC Forum type 2 Tags, MIFARE UltraLight & NTAG families,

 NFC Forum type 1 Tags, Jewel/Topaz cards,

 NFC Forum type 3 Tags,

 ISO/IEC 15693-3, NFC Forum type 5 Tags,

 ...

CLA INS P1 P2 LC/LE Data In Action / returns

hFF hB0 Address h00 READ

hFF hD6 Address xx Data WRITE

Table 11: PC/SC READ/WRITE instructions for wired-logic cards

6.6.2. MIFARE Classic authentication and keys

The PC/SC standard specifies one instruction to get authenticated onto MIFARE
Classic cards, and another to manage the keys known by the coupler. It is possible
that future products use the same instructions to implement the security of other
chips.

CLA INS P1 P2 LC Data In Action

hFF h86 h00 h00 h05 H01 h00 Address, Group, Index GENERAL AUTHENTICATE

hFF h82 Group Index h06 Key value LOAD KEY

Table 12: PC/SC implementation of MIFARE Classic security

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 113 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

6.6.3. ISO/IEC 15693-3 instructions

 This part is specific to SpringCard (not in the PC/SC specification)

The following instructions exports the complete function set defined by ISO/IEC
15693-3. Note that all the READ and WRITE functions (h20, h21, h23, h24) are used at
a higher level by the generic READ and WRITE instructions defined in § 6.6.1.

CLA INS P1 P2 LC/LE Data In Action / returns

hFF hF6 h20 h00 h01 Address READ SINGLE BLOCK

hFF hF6 h21 h00 xx Address, Data WRITE SINGLE BLOCK

hFF hF6 h22 h00 h01 Address LOCK BLOCK

hFF hF6 h23 h00 h02 Address, Count READ MULTIPLE BLOCKS

hFF hF6 h24 h00 xx Address, Count, Data WRITE MULTIPLE BLOCKS

hFF hF6 h27 h00 h01 AFI WRITE AFI

hFF hF6 h28 h00 h00 LOCK AFI

hFF hF6 h29 h00 h01 DSFID WRITE DSFID

hFF hF6 h2A h00 h00 LOCK DSFID

hFF hF6 h2B h00 h00 GET SYSTEM INFORMATION

hFF hF6 h2C h00 h02 Address, Count GET MULTIPLE BLOCKS SECURITY STATUS

Table 13: Embedded APDU Processor: mapping of ISO/IEC 15693-3 instructions

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 114 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7. Creating efficient and robust PC/SC applications

7.1. Connecting to the right coupler

7.1.1. Coupler names (and the issues behind that)

The PC/SC drivers are responsible for providing a unique name for every coupler. The
naming convention is:

{VendorName} {ProductName [SlotName]} {Number}

 The SlotName part is used for multi-interfaces couplers, such as SpringCard
CrazyWriter HSP or CSB HSP that have a contactless slot and many contact
slots.

 On Microsoft Windows, the Number part is a trivial counter that prevents two
couplers to have the same name. On PCSC-Lite implementation, the Number
part is in the form {BusNumber} {UnitNumber} (example: “SpringCard
H663 00 00”).

There are two frequent issues related to the SCardListReaders function call:

1. The naming convention is different from one PC/SC stack to another, and
from one PC/SC driver to another.

 For instance, SpringCard’s USB PC/SC driver for Microsoft Windows enumerates the
Prox’N’Roll PC/SC HSP as “SpringCard Prox’N’Roll Contactless {N}”.

But this device is also supported by Microsoft’s generic USB CCID driver, that names
it only “SpringCard Prox’N’Roll {N}”.

On the other hand, on a Linux or macOS X computer, the open source PCSC-Lite
CCID driver names the same device “SpringCard H663 {NN NN}”.

2. The number attributed to a coupler by the operating system depends on the
order of the plug’n’play enumeration, that depends on the user actions
(plug/unplug a coupler) and also behaves differently every time the
computer starts.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 115 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 Suppose you connect two Prox’N’Roll HSP PC/SC to your running computer, one
after the other. The first one will be named “SpringCard Prox’N’Roll Contactless 0”,
and the second one “SpringCard Prox’N’Roll Contactless 1”.

Now reboot the computer. You will have two couplers bearing the same name, but
there is a 50% chance that they have been swapped.

As a consequence, any application where the coupler’s name is hard-coded is likely
to fail on some computers or when another PC/SC device is added to the computer.

To avoid any problem, after calling SCardListReaders, the application shall either:

 Always present a list of the currently available couplers to the user (in a drop-
down list or so), and let the user decide which coupler he wants to use,

 “Guess” which one is the most suitable coupler and select this coupler
automatically (see next paragraph 7.1.2 for a possible strategy),

 Select the coupler based on its serial number (and store this serial number,
not the coupler’s name, in the application persistent settings). Paragraph 5.7
shows how to retrieve the coupler’s serial number,

 Monitor all the couplers, and try to recognize the card(s) that the application
supports, based on the ATR. Paragraph 5.8.2 shows how to use
SCardGetStatusChange to get notified when a card arrives in any coupler and
obtain its ATR

7.1.2. Identifying a SpringCard PC/SC contactless coupler

Use the following algorithm to select the first SpringCard PC/SC contactless coupler:

 Create a lower case copy of the coupler’s name,

 Does this string starts with “springcard”?
→ this is a SpringCard PC/SC coupler

 Does this string contains “contactless” or “nfc”?
→ this is the contactless slot of the SpringCard PC/SC coupler, on a Windows
system and using the driver supplied by SpringCard,

 Does this string ends with “00”?
→ this is the first slot, hence the contactless slot, of the SpringCard PC/SC
coupler, on a PCSC-Lite system,

 Else:
→ this is the only slot, hence the contactless slot, of the SpringCard PC/SC
coupler, on a Windows system and using the driver supplied by Microsoft.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 116 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7.2. Using background threads
By default, application code runs in the main thread. Every statement is therefore
executed in sequence. If you perform a long lasting operation, the application blocks
until the corresponding operation has finished.

Any I/O operation that could potentially take more than a few milliseconds to run
should be executed in a background thread, to prevent any “lag” or blocking of the
application’s window, which is a very bad user experience.

Although most smartcard-related I/O operations (SCardConnect, SCardTransmit) will
take only a few milliseconds in most situations, there are some situations where they
could block up to a few seconds, maybe up to one minute38.

Therefore, a windowed application should always implement the smartcard-related
I/O operations in a background thread.

 The need to implement nicely “long lasting” tasks more easily from the developer’s
point of view has led to the introduction of thread pools and/or to an asynchronous
programming paradigm in modern development languages.

Next version SpringCard.PCSC will allow using the async/await keywords of the
.NET environment.

7.2.1. Monitoring the coupler(s) and card(s) in background

Using SCardConnect as shown in paragraph 5.4 “Is there a card in the coupler?” is
not very satisfying, nor is it efficient to say the least.

In a naive implementation, it relies on the user repeatedly clicking on a “start”
button until the card is there, and the transaction could actually start.

Moving to an unattended implementation means calling SCardConnect periodically,
from a software timer, until it returns SCARD_S_SUCCESS – OK.

But if the timer is too fast, its a pure waste of computer resources – and if it is too
slow, a significant delay is introduced between the insertion of the card and the
beginning of the transaction.

Fortunately, the PC/SC API offers the SCardGetStatusChange function, that, despite
the lack of ‘Wait’ in the name, is a blocking call, with a timeout. The caller stops
consuming any resource, and is resumed by the middleware only when the coupler
fires an event. SCardConnect may then be called only when a card has just been
inserted.

A few other events are also fired by the middleware to ease the synchronisation
between two or more applications: an application waiting on SCardGetStatusChange

38 See examples in § 7.2.3.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 117 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

is notified when another application gains access to the card, and when the card is
made available again.

But as any other blocking function, SCardGetStatusChange shall never be called from
the application’s main thread.

Therefore, a card-aware application using SCardGetStatusChange shall always
implement this function call in a background thread.

7.2.2. SCardConnect “loop” in the background

As we have seen in paragraph 6.2.3, the application must be ready to retry its call to
SCardConnect if the card is used by another application. This is done by catching the
SCARD_E_SHARING_VIOLATION error and retrying after a few hundreds of
milliseconds.

Therefore, this SCardConnect + Sleep loop shall be implemented in a background
thread for a correct user experience.

7.2.3. SCardTransmit in the background

Even if the execution of a typical command by a smartcard is rather fast, there are
some situations where it could be dramatically slow:

 In the contactless world, an ISO/IEC 14443-4 smartcard may report that it
needs more than 5 seconds to process a command. If the user removes such
a card while there is a running command, the coupler will wait for a first 5-
second timeout. The coupler will then run its error-recovery algorithm, which
involve retrying up to 3 times. As a consequence, such a card will be reported
as removed only after 20 seconds or so;

 In the contact world, some (old) cryptographic cards take up to 60 seconds
only to generate a new RSA key-pair.

And, more than that, a typical card transaction involves more than one exchanges.
Even if every exchange take only 20ms or so, a sequence of 50 exchanges is already
1s in best case.

Therefore, the sequence of SCardTransmit that represent a card transaction shall be
implemented in a background thread for a correct user experience.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 118 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7.3. Recommended flowchart with 1+2 threads
The conclusion to paragraph 7.2 is that we should add two threads to the
application’s main thread:

 one thread to monitor the coupler, looping around SCardGetStatusChange,

 one thread implement the transaction, looping around SCardTransmit.

The basic flowchart of paragraph 5.1 should become the more complex flowchart
below:

Illustration 20: Flowchart of a PC/SC application with 3 threads

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 119 / 128

Start

Open the library
SCardEstablishContext

List the couplers
SCardListReaders

Select the coupler
User input / Stored config

Create a thread to
monitor the coupler

Wait until something
happens...

SCardWaitStatusChange

Reader monitor thread

Open the library
SCardEstablishContext

Card available?

YES

NO

Create a thread to
perform the
transaction

Card transaction thread

Open the library
SCardEstablishContext

Try to connect
to the card

SCardConnect

Connection
OK?

Send C-APDU /
Receive R-APDU
SCardTransmit

Something
else?

Close the library
SCardReleaseContext

Disconnect from
the card

SCardDisconnect

Done

NO

YES

YES

NO

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

There are a few things worth noticing in this flowchart:

 Every thread gets its own handle to the library by calling
SCardEstablishContext. This is mandatory in PCSC-Lite, and considered a good
practice on Windows too. Otherwise, the application can not stop the
background threads individually.

 Actually, the flowchart doesn’t show either how the Reader monitor thread
and the Card transaction thread could be stopped. There is a single function
to do so: SCardCancel. Just call SCardCancel from the main thread, providing
as single parameter the hContext belonging to the thread you want to stop.
Any blocking call (SCardWaitStatusChange, long SCardTransmit) will
terminate with error SCARD_E_CANCELLED. That is why you should have a
single hContext for every thread.

 The flowchart doesn’t show either how the Reader monitor thread and the
Card transaction thread interact with the user. This is often the most tricky
part in such a windowed-application, because the GUI belongs to the main
thread, and the background threads must use callbacks (or messages, or
delegates) to have the main thread manipulate the GUI for them. If you are
not familiar with this concept, read this page at Microsoft’s:

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-
patterns/calling-synchronous-methods-asynchronously

7.4. Understanding the errors (and implementing a smart recovery)
The PC/SC API defines a lot of errors. It is not in the aim of this guide to document all
of them. Nevertheless, the developer will find in the tables some tips to understand
– and avoid – a few frequent mistakes, or to correctly handle “user related” errors.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 120 / 128

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7.4.1. Errors that should be recovered nicely by the application

Error code Explanation Remark/Recommended
recovery

SCARD_E_CANCELLED A blocking call has been
canceled

This error is created by another
thread of the same application
calling SCardCancel

SCARD_E_UNKNOWN_READER Invalid szReader Either the coupler has been
removed by the user, or the
application’s configuration is
out of date

SCARD_E_SHARING_VIOLATION The card (or coupler) is
already reserved by
another application

Try again later

SCARD_E_NO_SMARTCARD SCardConnect called to an
empty coupler

Monitor the coupler
Try again later

SCARD_W_REMOVED_CARD
(contactless card)

The card has been
removed

Try again silently if the card is
inserted again
Prompt the user to re-insert the
card

7.4.2. “User related” errors

Error code Explanation Remark/Recommended
recovery

SCARD_E_READER_UNAVAILABLE A coupler has been
removed while being
monitored by
SCardWaitStatusChange

Prompt the user to re-plug or to
select another

SCARD_E_NO_READERS_AVAILAB
LE

There is no coupler (at all)
connected to the computer

Prompt the user to plug a
coupler

SCARD_W_REMOVED_CARD
(contact card)

The card has been
removed

Prompt the user to re-insert the
card

SCARD_W_UNRESPONSIVE_
CARD
(contact card)

The cars is mute Prompt the user to check the
card’s orientation and to clean
the contact

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 121 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

7.4.3. Errors that shall never occur after the application has been debugged...

Error code Explanation Remark

SCARD_E_INSUFFICIENT_BUFFER dwRecvLength too small in
SCardTransmit

Use 260 B-buffers if the
card/coupler supports short
APDUs only. Allocate 64 kB-
buffers with extended APDUs

SCARD_E_INVALID_HANDLE hCard or hContext is invalid Check the application’s
flowchart...

ERROR_INVALID_HANDLE
(Windows only, code 6)

hContext is invalid Check the application’s
flowchart...

SCARD_E_PROTO_MISMATCH Invalid protocol parameter Always use T=1 for contactless
and for contact cards
supporting it.
Use T=0 only with contact cards
not supporting T=1.

SCARD_E_PCI_TOO_SMALL Wrong pioSendPci (or
pioRecvPci) in
SCardConnect call

Use SCARD_PCI_T0 for T=0,
SCARD_PCI_T1 for T=1

SCARD_W_RESET_CARD The card has been reset
(SCardDisconnect or
SCardReconnect called by
this application or another
on the same card)

Check the application’s
flowchart…
Don’t share the card.

7.4.4. System errors

Error code Explanation Action

SCARD_E_NO_SERVICE Failed to connect to the
PC/SC middleware

Check that the PC/SC
middleware is correctly
installed, and that the user
account is allowed to use it

SCARD_E_SERVICE_STOPPED The PC/SC middleware has
been stopped

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 122 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

8. Smartcard applications without PC/SC

Developing a smartcard-aware application is not limited to high-end operating
systems, such as Microsoft Windows, Linux or macOS X. In many OEM integrations,
SpringCard couplers are driven by an industrial PLC or maybe a microcontroller
unable to run a complete PC/SC stack. There is also the case of Android, where
PC/SC is not available on mainstream devices.

More than that, even on a high-end host, the PC/SC driver and middleware are
software layers that provide useful services, but at the price of a significant overhead
that increases the time it takes to perform a transaction with the card. In such
situation, notably when the coupler uses a simple serial or TCP channel to
communicate, it could be more efficient to drive the coupler directly from the
application. This is of course an added complexity for the developer, but object
oriented programming allows to mask this complexity somehow.

This chapter introduces two architectures that are used by SpringCard in different
projects as an alternative to a “genuine” PC/SC stack.

8.1. SpringCard zero-driver CCID implementation
Doc. PMD15282 is the reference guide for the zero-driver CCID implementation.

CCID is the USB specification for Chip Card Interface Devices. In clear words, it is a
recommended protocol for implementers of USB-attached PC/SC couplers.

SpringCard not only uses this protocol in all its USB couplers, but also uses CCID as
the foundation of the communication protocols created over other mediums: TCP,
serial, and even Bluetooth Smart (also known as BLE, Bluetooth Low Energy).

The CCID protocol introduces a set of commands, that maps immediately into the
function offered by the PC/SC API. It is therefore not difficult for a developer with a
good understanding of the concepts documented in this guide to develop a
smartcard-aware application directly on top of CCID. Table 14 lists the CCID
commands, and their mapping into PC/SC functions.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 123 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

PC/SC function See
parag
raph

CCID Command CCID Response

SCardGetStatusChange 5.4 PC_To_RDR_GetSlotStatus39 RDR_To_PC_SlotStatus

SCardConnect 5.5 PC_To_RDR_IccPowerOn

Card absent:
RDR_To_PC_SlotStatus
Card present (returns the ATR):
RDR_To_PC_DataBlock

SCardTransmit 5.6 PC_To_RDR_XfrBlock RDR_To_PC_DataBlock

SCardDisconnect 5.9 PC_To_RDR_IccPowerOff RDR_To_PC_SlotStatus

SCardControl PC_To_RDR_Escape RDR_To_PC_Escape

Table 14: CCID commands/responses

 SpringCard.PCSC for .NET is able to communicate with SpringCard network-
attached PC/SC couplers (E663 family) and serial-attached PC/SC couplers (K663
family) without going through a PC/SC driver and stack40. Look for namespace
SpringCard.PCSC.ZeroDriver in the SDK.

8.2. Android lightweight CCID implementation

8.2.1. Motivation

Given the lack of support for PC/SC in mainstream Android-based devices (see
paragraph 4.6), and in an effort to address the growing demand to associate a
contactless coupler to an Android terminal, SpringCard has developed a pure-Java
solution that bridges Android applications with a USB PC/SC coupler (illustration 21,
next page).

8.2.2. Technical architecture

This solution relies on a very simplified, 2-tiers architecture:

 A user-mode service, directly available on Google Play, implements the CCID
protocol on top of Android’s USB Host API (android.hardware.usb),

 An open-source Java library ties the client application to the service. It could
be ported as a plug-ins for non-native development.

39 CCID also features an “interrupt” system, when the computer can be notified of card movements (insert/remove) without
having to query the coupler with PC_To_RDR_GetSlotStatus periodically.

40 The E663 family has a PC/SC driver for Windows and PCSC-Lite, but the K663 does not even have such a driver and is always
operated in zero-driver mode, most of the time through the legacy SpringProx API.

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 124 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

 An introduction to the SpringCard “PC/SC” solution for Android
http://tech.springcard.com/2015/springcard-pcsc-solution-for-android-released/

Please remember that this solution, although bearing the “PC/SC” word in its name,
is very far from a standard implementation, yet it is the only solution that does not
involve rooting your tablet or mobile phone, or building a custom image of the
Android system.

Illustration 21: The lighweight "PS/SC Like" architecture
proposed by SpringCard for Android

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 125 / 128

Smartcard-aware application
(Java, Cordova, Xamarin...)

SpringCard
PC/SC service

SpringCard
PC/SC coupler

USB

Smartcard

SpringCard PC/SC library

http://tech.springcard.com/2015/springcard-pcsc-solution-for-android-released/

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

Illustration 22: A Nexus 9 Android Tablet with a Prox'N'Roll PC/SC HSP

8.2.3. Frequent issues with mainstream Android tablets

There is a frequent issue, one must be really aware off, with Android devices: most of
them don’t feature a real USB host port (with a type A connector) as it is the case for
a PC.

Instead, they have a single, multi-role, connector, primarily designed to be a USB
device port (to connect the tablet as a slave device to a computer) and a charging
port. And unfortunately, the last role of being a USB host is very often poorly
implemented, with blocking issues being related to power supply:

 The Android host may be unable to supply more than 4.3 or 4.4V (the USB
standard says it should be 5V),

 The Android host may be unable to provide more than 50 or 100mA (a USB
PC/SC coupler typically requires 150 mA @ 5V, with peaks up to 200mA. And
@ 4.5V, the current requirement increases to compensate the lower voltage),

 It could be impossible to power the Android tablet from a mains adapter and
to use it has a USB host simultaneously.

 In other words, if your project involves using an Android tablet with a USB PC/SC
coupler, buy a few tablets for testing purposes, and check carefully that everything is
fine before going into production stage!

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 126 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

“Terminating a development-related book after exactly 27 pages is a kind of fullness!”

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 127 / 128

Smartcards and contactless smartcards
Integrators's and Implementer's Guide

LEGAL INFORMATION

Disclaimer
Information in this document is subject to change without
notice.

This document is provided for informational purposes only
and shall not be construed as a commercial offer, a license,
an advisory, fiduciary or professional relationship between
SPRINGCARD and you. No information provided in this
document shall be considered a substitute for your
independent investigation.

The information provided in document may be related to
products or services that are not available in your country.

This document is provided "as is" and without warranty of
any kind to the extent allowed by the applicable law. While
SPRINGCARD will use reasonable efforts to provide reliable
information, we don't warrant that this document is free of
inaccuracies, errors and/or omissions, or that its content is
appropriate for your particular use or up to date.
SPRINGCARD reserves the right to change the information at
any time without notice.

SPRINGCARD doesn't warrant any results derived from the
use of the products described in this document. SPRINGCARD
will not be liable for any indirect, consequential or incidental
damages, including but not limited to lost profits or
revenues, business interruption, loss of data arising out of or
in connection with the use, inability to use or reliance on any
product (either hardware or software) described in this
document.

These products are not designed for use in life support
appliances, devices, or systems where malfunction of these
product may result in personal injury. SPRINGCARD
customers using or selling these products for use in such
applications do so on their own risk and agree to fully
indemnify SPRINGCARD for any damages resulting from such
improper use or sale.

Copyright information
SPRINGCARD, the SPRINGCARD logo are registered
trademarks of SPRINGCARD SAS.

MIFARE, MIFARE Classic, MIFARE Plus, MIFARE UltraLight,
MIFARE Desfire, the MIFARE and the NXP logos are registered
trademarks of NXP B.V.

NFC Forum is a trademark or registered trademark of NFC
Forum, Inc. in the U.S. and in other countries.

Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries.

UNIX is a registered trademark of the Open Group.

Apple, the Apple logo and macOS are registered trademarks
of Apple, Inc. in the U.S. and in other countries.

Windows and the Windows logo are registered trademarks of
Microsoft Corporation in the U.S. and in other countries.

All other brand names, product names, or trademarks belong
to their respective holders.

Copyright notice
All information in this document is either public information
or is the intellectual property of SPRINGCARD and/or its
suppliers or partners.

You are free to view and print this document for your own
use only. Those rights granted to you constitute a license and
not a transfer of title: you may not remove this copyright
notice nor the proprietary notices contained in this
documents, and you are not allowed to publish or reproduce
this document, either on the web or by any mean, without
written permission of SPRINGCARD.

Copyright © SPRINGCARD SAS 2018, all rights reserved.

Editor
SPRINGCARD SAS au capital de 227 000 €

RCS EVRY B 429 665 482

Parc Gutenberg, 13 voie La Cardon, 91120 Palaiseau

FRANCE

Contact
For more information and to locate our sales office or
distributor in your country or area, please visit:

www.springcard.com

All information in this document is subject to the disclaimers stated on last page.

PMD17041 - AA Page 128 / 128

http://www.springcard.com/

	1. Introduction
	1.1. Overview
	1.2. Audience
	1.3. Related documents
	1.4. Product listing
	1.5. Reference documents
	1.5.1. International standards
	1.5.2. Public specifications

	1.6. Support and updates
	1.7. Conventions used in this document
	1.7.1. Typographic conventions for numbers
	1.7.1.1. Hex notation
	1.7.1.2. Binary notation
	1.7.1.3. Decimal notation

	1.7.2. Object size
	1.7.3. Iconography

	1.8. Glossary and acronyms

	2. Smartcards and couplers – Concepts and definitions
	2.1. What is a smartcard?
	2.2. What is a smartcard, according to ISO/IEC 7816
	2.2.1. Form-factor and electrical interface
	2.2.2. Protocol
	2.2.3. Software (application) interface
	2.2.4. The grammar
	2.2.4.1. Commands
	2.2.4.2. Responses

	2.2.5. The vocabulary
	2.2.5.1. Principles
	2.2.5.2. Transactions
	2.2.5.3. Anti-tearing
	2.2.5.4. Instructions
	2.2.5.5. Status Words

	2.3. Variations around ISO/IEC 7816
	2.3.1. SAM and HSM
	2.3.2. Secure elements and other “smartcard chips without card”
	2.3.3. Wired-logic, storage only card
	2.3.4. Contactless cards
	2.3.5. Wired-logic, storage only contactless cards

	2.4. The coupling device or coupler

	3. Contactless cards, RFID, NFC – concepts and standards
	3.1. ‘Proximity’ contactless smartcards
	3.1.1. Basics
	3.1.2. The standards for proximity cards
	3.1.3. Polling
	3.1.4. Anticollision
	3.1.5. Single card approach
	3.1.6. Transport and application protocols
	3.1.6.1. Full ISO stack
	3.1.6.2. Vendor-specific command sets

	3.1.7. Contactless smartcards and PC/SC
	3.1.8. Contactless only, dual, two-chip cards

	3.2. Wired-logic proximity contactless cards
	3.2.1. Support of wired-logic cards by standard PCDs
	3.2.2. Support of wired-logic contactless cards under PC/SC

	3.3. Operating distance: size matters
	3.3.1. Decrease of the RF field with the distance to the PCD
	3.3.2. Field level required by the PICC
	3.3.3. Size of the PICC
	3.3.4. Which classes a coupler has to support?
	3.3.5. Actual operating distance

	3.4. ‘Vicinity’ contactless cards
	3.4.1. The need for hand free systems
	3.4.2. The standards
	3.4.2.1. Size
	3.4.2.2. Field level
	3.4.2.3. Communication protocol
	3.4.2.4. Application-level protocol

	3.4.3. Vicinity contactless cards vs RFID HF tags or labels

	3.5. NFC Tags
	3.5.1. NFC and the NFC Forum
	3.5.2. The concept behind NFC Tags
	3.5.3. NFC Forum Data Exchange Format and Record Types
	3.5.4. List of compliant PICCs / VICCs
	3.5.4.1. Type 1 Tag (T1T)
	3.5.4.2. Type 2 Tag (T2T)
	3.5.4.3. Type 3 Tag
	3.5.4.4. Type 4 Tag
	3.5.4.5. Type 5 Tag

	3.6. Key actors and brands
	3.6.1. NXP, ex Philips Semiconductors
	3.6.1.1. MIFARE – The historical background
	3.6.1.2. MIFARE Classic
	3.6.1.3. MIFARE Plus
	3.6.1.4. MIFARE UltraLight and NTAG
	3.6.1.5. SmartMX
	3.6.1.6. DESFire
	3.6.1.7. ICODE

	3.6.2. STMicroElectronics
	3.6.2.1. Wired-logic PICCs
	3.6.2.2. MCUs for PICCs
	3.6.2.3. VICCs

	3.6.3. Infineon
	3.6.3.1. Wired-logic PICCs
	3.6.3.2. MCUs for PICCs
	3.6.3.3. VICCs

	3.6.4. Texas Instrument
	3.6.4.1. VICCs

	3.6.5. Atmel (now Microchip)
	3.6.5.1. Wired-logic PICCs

	4. PC/SC Stack – role, specificities, alternatives
	4.1. Introduction
	4.2. The PC/SC architecture (and vocabulary)
	4.2.1. Smartcards, readers and drivers
	4.2.2. The middleware
	4.2.3. The API
	4.2.4. Helpers

	4.3. PC/SC on Microsoft Windows
	4.3.1. Official documentation
	4.3.2. Technical implementation
	4.3.3. Writing and using card helpers
	4.3.4. Limitations

	4.4. Linux and other UNIX-like systems
	4.5. macOS X
	4.6. Android

	5. An application that uses PC/SC – Introduction to the API and typical workflow
	5.1. Introduction
	5.2. Establish a PC/SC context
	5.3. List the PC/SC couplers
	5.4. Is there a card in the coupler?
	5.5. Connect to the card
	5.6. Send commands to the card – and receive its responses
	5.7. Retrieve a coupler’s (or driver’s) meta-data
	5.8. How to retrieve the card’s ATR?
	5.8.1. SCardGetAttrib method
	5.8.2. SCardGetStatusChange method
	5.8.3. SCardStatus method

	5.9. Disconnect from the card
	5.10. Release the PC/SC context

	6. Using contactless cards with PC/SC
	6.1. Introduction
	6.2. Connecting to a contactless card
	6.2.1. Protocol
	6.2.2. Share mode
	6.2.3. Sample code
	6.2.3.1. SCardConnect for a contactless card – C example
	6.2.3.2. SCardConnect for a contactless card – C# example

	6.3. Retrieving the card’s protocol level ID
	6.3.1. Motivation
	6.3.2. ID name, length and construction among the standards
	6.3.3. Are ISO/IEC 14443 A 4-byte UIDs really unique?
	6.3.4. Random IDs
	6.3.5. The GET DATA (ID) instruction
	6.3.5.1. GET DATA (ID) – C example
	6.3.5.2. GET DATA (ID) – C# example

	6.4. Recognizing the contactless card type
	6.4.1. The ATR of a wired-logic contactless card
	6.4.1.1. Protocol
	6.4.1.2. Card name

	6.4.2. The ATR of a contactless smartcard
	6.4.3. Obtaining technical data through the GET DATA instruction

	6.5. Exchanging APDUs with a contactless smartcard
	6.5.1. Case of a smartcard fully compliant with ISO/IEC 7816-4
	6.5.1.1. APDU exchange – C example
	6.5.1.2. APDU exchange – C# example

	6.5.2. Case of a smartcard having a custom APDU format
	6.5.2.1. Encapsulated APDU exchange – C example
	6.5.2.2. Encapsulated APDU exchange – C# example

	6.6. The embedded APDU Processor for wired-logic cards
	6.6.1. Generic wired-logic card read/write instructions
	6.6.2. MIFARE Classic authentication and keys
	6.6.3. ISO/IEC 15693-3 instructions

	7. Creating efficient and robust PC/SC applications
	7.1. Connecting to the right coupler
	7.1.1. Coupler names (and the issues behind that)
	7.1.2. Identifying a SpringCard PC/SC contactless coupler

	7.2. Using background threads
	7.2.1. Monitoring the coupler(s) and card(s) in background
	7.2.2. SCardConnect “loop” in the background
	7.2.3. SCardTransmit in the background

	7.3. Recommended flowchart with 1+2 threads
	7.4. Understanding the errors (and implementing a smart recovery)
	7.4.1. Errors that should be recovered nicely by the application
	7.4.2. “User related” errors
	7.4.3. Errors that shall never occur after the application has been debugged...
	7.4.4. System errors

	8. Smartcard applications without PC/SC
	8.1. SpringCard zero-driver CCID implementation
	8.2. Android lightweight CCID implementation
	8.2.1. Motivation
	8.2.2. Technical architecture
	8.2.3. Frequent issues with mainstream Android tablets

