

SpringCard SpringProx Readers

Hidden registers and advanced configuration options

DOCUMENT IDENTIFICATION

Category	Administration manua	Administration manual			
Family/Customer	SpringProx FW	SpringProx FW			
Reference	PMA3046	PMA3046 Version BD			
Status	draft	draft Classification Confidential			
Keywords	H663, CrazyWriter-HS	H663, CrazyWriter-HSP, CSB-HSP, H512, K663, Prox'N'Drive, CSB4			
Abstract					

File name	V:\Dossiers\SpringCard\A-Notices\Commun\Configuration avancee\[PMA3046-BESpringProx Hidden registers and advanced configuration options.odt			
Date saved	15/06/16 Date printed 05/12/12			

REVISION HISTORY

Ver.	Date	Author	Valid	d. by	Approv.	Details
			Tech.	Qual.	by	
AA	06/03/13	JDA				Created
AB	21/05/14	JDA				Updated for CW-HSP and CSB-HSP
AC	12/06/14	JDA				Mode2 removed in 4.4.1
ВА	18/08/14	JDA				Now covering all SpringProx products (K663 family added)
ВВ	02/09/14	JDA				Added timings for CCID mode
ВС	13/05/16	JDA				Merged 2 arrays in a single one to enhance readability

CONTENTS

1. INTRODUCTION6
2.HOW TO ACCESS TO THE CONFIGURATION REGISTERS7
2.1.1.Abstract7
2.1.2.Using the product's console
2.1.3.Using the product's Legacy interface through SpringProx API
2.1.4.Using the product's PC/SC interface through
SCardTransmit7
2.1.5.Using the product's PC/SC interface through
SCardControl7
2.1.6.Pushing a new temporary configuration8
3.HIDDEN CONFIGURATION REGISTERS9
3.1.List of the configuration registers9
${\tt 3.1.1.Publicly-documented\ configuration\ registers9}$
All those registers are documented in doc. PMD22719
3.1.2.Hidden configuration registers10
$3.2.\mbox{Product UID, name, and protection against changes11}$
3.2.1.Lock configuration registers11
3.2.2.Serial number
3.2.3.Product name
3.3.Common to most products
3.3.1.Slot mapping and naming, slot behaviour on startup12
3.3.2.Timings for the CCID state machine
3.3.3.CCID debug level
3.3.4.Firmware operating mode
3.3.6.Field shutdown
3.4. Common to all products based on the RC663 chipset15
3.4.1.TX amplifier configuration
3.4.2.RF overshoot compensation (ISO 14443-A only)16
3.4.3.RC663 bug (?) workaround
3.4.4.LPCD settings
3.5. Specific to ABC7816 library
3.5.1.Card presence edge / fool hardware detect18
3.5.2.ABC7816 licence and smartcard CCID options19
4.EXPLORING THE PRODUCT'S HARDWARE20
4.1.1.Abstract20
4.1.2.Using the product's console20
4.1.3. Using the product's Legacy interface through SpringProx
API20
4.1.4. Using the product's PC/SC interface through
SCardTransmit20
4.1.5. Using the product's PC/SC interface through
ScardControl
5.ACCESS TO THE PRODUCT'S I2C BUS21
5.1.1.Abstract21
5.1.2.Using the product's console21
$5.1.3. Using \ the \ product's \ Legacy \ interface \ through \ Spring Prox$
API21

5.1.4.Using the product's PC/SC interface through	
SCardTransmit	21
5.1.5.Using the product's PC/SC interface through	
ScardControl	21

4										
	IN	т	D١	n	ח		\boldsymbol{c}	П	റ	N
	HV		יח	U	יש	U	u		u	IIV

2. How to access to the configuration registers

2.1.1. Abstract

The non-volatile memory has a limited write/erase endurance.

Writing any configuration register more than 100 times may permanently damage the product.

- 2.1.2. Using the product's console
- 2.1.3. Using the product's Legacy interface through SpringProx API
- 2.1.4. Using the product's PC/SC interface through SCardTransmit

Use the **READER CONTROL** command APDU (FF F0 00 00 ...) as follow:

2.1.5. Using the product's PC/SC interface through SCardControl

a. Reading reader's registers

To read the value of the configuration register at <index>, send the sequence:

```
58 OE <index>
```

Remember that the returned value (if some) is prefixed by the status code ($_h00$ on success, $_h16$ if the value is not defined in the non-volatile memory).

b. Writing reader's registers

To define the value of the configuration register at <index>, send the sequence:

```
58 OD <index> <...data...>
```

Send an empty <data> (zero-length) to erase the current value. In this case, default value will be used.

The value of the configuration registers is loaded by the SpringProx's firmware upon reset only. To apply the new configuration, you must reset the SpringProx (or cycle power).

Alternatively, you may load temporary configuration settings as explained in the next paragraph.

2.1.6. Pushing a new temporary configuration

To overrule temporarily the value of the configuration register at <index>, send the sequence:

Send an empty <data> (zero-length) to reload the default value.

This value will be applied immediately, but on next reset the SpringProx will reload its configuration registers from the non-volatile memory.

3. List of configuration registers

Address	Section	Name	Remark/See	Status
_h 67	Serial	Baudrate & options		pub
_h 6E	Global	Security-related options		pub
		Active protocols and network services		
_h 80	Network	IPv4 address, mask and gateway		pub
_h 81	Network	Port(s) of the network service(s)		pub
_h 84	Network	Security of the network service(s)		pub
_h 85	Network	Operation key of the main net. service		pub
_h 86	Network	Admin. key of the main net. service		pub
_h 8D	Network	Ethernet options		pub
_h 8E	Network	Info / Location string		pub
_h 8F	Network	Password to the telnet service		pub
_h B0	Contactless	Enabled HF protocols		pub
_h B1	PC/SC	Slot mapping and naming	4.2.1	priv
_h B2	PC/SC	CLA of the APDU interpreter		pub
_h B3	PC/SC	RF behaviour in PC/SC mode		pub
_h B4	Contactless	Parameters for polling		pub
_h B5	PC/SC	Timings for CCID state machine		priv
_h B6	Contactless	RC663 bug (?) workaround	4.3.3	priv
_h B8	Contactless	Enabled LF protocols	Prox'N'Drive HF/LF	pub
hВА		Card presence edge / fool hardware detect	4.4.1	priv
hВВ	7816	Allowed baudrates for the smartcard slots		pub
hВD		CCID debug level	4.2.3	priv
_h C0	Global	Firmware operation mode	4.2.4	priv
_h C1	Contactless	RF levels	4.3.1	priv
_h C2	7816	Tweak timeouts		priv
_h C3	7816	Options for the smartcard slots		pub
_h C4	Contactless	Allowed baudrates in T=CL		pub
_h C5	Contactless	Options for T=CL		pub
hC6	Contactless	RF overshoot compensation	4.3.2	priv
_h C7		LPCD settings	4.3.4	priv
_h C8	Contactless	Number of antennas		pub
_h C9	Contactless	Options for polling		pub
ьCA	Core	Configuration of the LEDs		pub
hСВ	Core	Options for the LEDs and GPIOs		pub
ьCC	Core	Behaviour of the LEDs and buzzer		pub

hCD		Global debug level	4.2.5	priv
_h CE		Field shutdown	4.2.6	priv
hCF	Felica	Service Codes for Felica read/write		pub
_h E1	NFC P2P	Global Bytes bytes in ATR_REQ		pub
_h F0		Lock configuration registers	4.1.1	priv
_h F1		Serial number	4.1.2	priv
_h F2		Product name	4.1.3	priv
ьFA		ABC7816 licence and smartcard CCID	4.4.2	priv
		options		

The public registers are documented in doc. PMD2271.

4. DETAILS

4.1. PRODUCT UID, NAME, AND PROTECTION AGAINST CHANGES

4.1.1. Lock configuration registers

This register prevent overwriting the value of some specific configuration register.

Address: hF0 - Size: 1 byte

	Bit	Action if set	Note
msb	7	Lock registers hF1 to hFE	
	6	Lock register hFO itself	
	5	Lock register ₀C0	
	4	RFU	
	3	RFU	
	2	RFU	
	1	RFU	
Isb	0	RFU	

Default value: h00 (all registers are writeable)

4.1.2. Serial number

This register defines the serial number announced by the product (in its USB descriptor, among others).

Address: hF1 - Size: 4 bytes

Default value: empty (no serial number)

4.1.3. Product name

This register defines the name announced by the product (in its USB descriptor, among others).

Address: hF2 - Size: variable

Default value: empty (use default product name defined in the firmware: "H512" or "H663").

4.2. COMMON TO MOST PRODUCTS

4.2.1. Slot mapping and naming, slot behaviour on startup

Warning: this register has changed between version 1.xx and 2.xx

The first byte is present in public documentations, the second byte is documented only here

Address: hB1 - Size: 1 byte

	Bit	Action if set	Note
Byte 0			
msb	7	Force a letter in the name of the SAM slots	Even if there's only one slot, it will be named "SAM A"
	6	Force a letter in the name of the ID-1 slots	Even if there's only one slot, it will be named "Contact A"
	5	RFU	
	4	Prefix the slot name using the product's serial number (in hex)	This is useful for computers with numerous products attached
	3	Start with SAM slot(s) OFF	All the SAM slot(s) will not run until resumed by a Control command
	2	Start with Contact slot OFF	The Contact slot will not run until resumed by a Control command
	1	Start with Contactless slot OFF	The Contactless slot will not run until resumed by a Control command
msb	0	No contactless slot	The Contactless slot will not be enumerated (and will never run)
Byte 1			
msb	7	RFU	
	6	RFU	
	5	RFU	
	4	RFU	
	3	RFU	
	2 - 0	Slot enumeration order:	
		$_{b}$ 000 : Contactless \rightarrow Contact \rightarrow SAM(s)	
		$_{b}$ 001 : Contactless \rightarrow SAM(s) \rightarrow Contact	
		$_{b}$ 010 : Contact \rightarrow Contactless \rightarrow SAM(s)	
		$_{b}$ 011 : Contact \rightarrow SAM(s) \rightarrow Contactless	
		$_{b}$ 100 : SAM(s) \rightarrow Contactless \rightarrow Contact	
Isb		$_{b}$ 101 : SAM(s) \rightarrow Contact \rightarrow Contactless	
		Other values are RFU	

Default value: h00 00

4.2.2. Timings for the CCID state machine

Warning: this register's default values have changed between version 1.xx and 2.xx

Address: hB5 - Size: 8 bytes

Byte	Role	Default
0	CCID startup delay (s)	2
1	Timeout on the USB link (s)	2
2	Min. delay between 2 USB interrupts (ms)	150
3	Min. delay between an interrupt and a bulk-out (ms)	30
4	Delay the card tracking after power ON (ms)	25
5	Delay the card tracking after power OFF (ms)	30
6	Interval between ISO 7816 GetStatus (ms)	25
7	Debounce start/stop commands (ms)	150

4.2.3. CCID debug level

Address: hBD - Size: 1 byte

	Bit	Action if set	Note		
msb	7	Trace specially the smartcard slots power	er sequences		
	6	Trace PC_To_RDR_Escape (SCardContro	1)		
	5	Trace the embedded APDU interpreter			
	4	Trace PC_To_RDR_Transmit (SCardTransmit)			
	3	Trace the dialog with the PC (Bulk In/Bulk Out frames)			
	2	Trace the function calls			
	1	Trace the status of the CCID slots			
lsb	0	Trace errors			

Default value: h00 (CCID debug disabled)

4.2.4. Firmware operating mode

This register defines how the product's firmware will be seen by the computer. It can be either PC/SC or Legacy.

Address: hC0 - Size: 1 byte

Value	Operating mode
_h 01	Legacy mode
_h 02	PC/SC mode
_h 03	HID (keyboard) mode
_h 81	Legacy mode without serial number in USB descriptor
_h 82	PC/SC mode without serial number in USB descriptor
_h 83	HID (keyboard) mode without serial number in USB descriptor

Default value: ${}_{h}$ 02 (PC/SC with serial number)

All other values are RFU and shall not be used.

4.2.5. Global debug level

Address: hCD - Size: 2 bytes

	Bit	Action if set	Note
msb	15	RFU	
	14	RFU	
	13	RFU	
	12	RFU	
	11	RFU	
	10	RFU	
	9	RFU	
	8	RFU	
	7	RFU	
	6	RFU	
	5	RFU	
	4	RFU	
	3	RFU	
	2	RFU	
	1	RFU	
Isb	0	RFU	

Default value: h0000 (Global debug disabled)

4.2.6. Field shutdown

Address: hCE - Size: 1 byte

	Bit	Action if set	Note
msb	7	RFU	
	6	RFU	
	5	RFU	
	4	RFU	
	3	RFU	
	2	RFU	
	1	RFU	
Isb	0	RF field is switched OFF	

Default value: h00 (RF field is active)

4.3. COMMON TO ALL PRODUCTS BASED ON THE RC663 CHIPSET

4.3.1. TX amplifier configuration

Address: hC1 - Size: 3 bytes

Byte	Role	Default
0	Field set_cw_amplitude in register TxAmp	h03
1	Field set_residual_carrier in register TxAmp for ISO 14443-B and Felica	h03
2	Field set_residual_carrier in register TxAmp for ISO 15693	h03

NB: these default value may be overridden by hardware-specific values (for instance for Prox'N'Roll HSP).

4.3.2. RF overshoot compensation (ISO 14443-A only)

Address: hC6 - Size: 3 bytes

Byte	Role	Default				
106kbit/s	106kbit/s					
0	4 high-level bits: field <i>OvershootT1</i> in register <i>TxI</i>	h12				
	4 high-low bits: field OvershootT2 in register TxCon					
1	Field set_residual_carrier in register TxAmp	h08				
212kbit/s						
2	4 high-level bits: field <i>OvershootT1</i> in register <i>TxI</i>	h00				
	4 high-low bits: field OvershootT2 in register TxCon					
3	Field set_residual_carrier in register TxAmp	_h 5C				
424kbit/s						
4	4 high-level bits: field <i>OvershootT1</i> in register <i>TxI</i>	h00				
	4 high-low bits: field <i>OvershootT2</i> in register <i>TxCon</i>					
5	Field set_residual_carrier in register TxAmp	ր5C				
848kbit/s						
6	4 high-level bits: field <i>OvershootT1</i> in register <i>TxI</i>	h00				
	4 high-low bits: field OvershootT2 in register TxCon					
7	Field set_residual_carrier in register TxAmp	_h 9E				

4.3.3. RC663 bug (?) workaround

Address: hB6 - Size: 1 byte

	Byte	Role	Default
ſ	0	Magic value going to register h5F	hFO

4.3.4. LPCD settings

This register defines the parameters used by the **K663** when LPCD is active.

Address: hC7 - Size: 5 bytes

Byte	Data	Default value	Remark
0	Threshold	h00	
1 - 2	Interval (ms)	h0000	
3 - 4	Probe time (ns)	h0000	

4.4. Specific to ABC7816 LIBRARY

4.4.1. Card presence edge / fool hardware detect

This register defines how the **H663** detects and handles the smartcard slots.

Address: hBA - Size: 2 bytes

	Bit	Action if set	Note		
	Logic of the card presence switches				
msb	msb 15 Stop contactless slot when there's a contact card in slot 0				
	14	RFU			
	13	RFU			
	12	Invert logic for slot 4 card pres. switch			
	11	Invert logic for slot 3 card pres. switch			
	10	Invert logic for slot 2 card pres. switch			
9 Invert logic for slot 1 card pres. switch					
	8	Invert logic for slot 0 card pres. switch			
		Fool hardware detect (multi-slot mode only)			
	7	RFU			
	6	RFU			
	5	Invert logic to detect slot 1			
	4	RFU			
	3 RFU				
	2	RFU			
	1	Invert logic to detect slots 2-3-4			
Isb	0	Invert logic to detect slot 0			

Default value: h0000 (Trust the hardware)

4.4.2. ABC7816 licence and smartcard CCID options

This register activates and configure the ISO 7816 library provided by out partner ABC Smartcard.

Address: hFA - Size: 1 byte

	Bit	Action if set	Note	
msb	7	RFU		
	6	RFU		
	5	RFU		
	4	RFU		
	3	RFU		
	2	RFU		
Isb	0-1	Support level:		
		00 : ABC7816 disabled		
		01 : ABC7816 enabled, single slot mode only		
		02 : <i>RFU</i>		
		03 : ABC7816 enabled, multi-slot mode		

Default value: h00 (ABC7816 disabled)

5. EXPLORING THE PRODUCT'S HARDWARE

- 5.1.1. Abstract
- 5.1.2. Using the product's console
- 5.1.3. Using the product's Legacy interface through SpringProx API
- 5.1.4. Using the product's PC/SC interface through SCardTransmit

Use the **READER CONTROL** command APDU (FF F0 00 00 ...) as follow:

5.1.5. Using the product's PC/SC interface through ScardControl

6. Access to the product's I2C bus

6.1.1. Abstract

6.1.2. Using the product's console

6.1.3. Using the product's Legacy interface through SpringProx API

To read a value through i2C, you will need to send the command:

Sprox Control	Read I2C	Adress	Byte number to read
0x58	0x12	@	N

To write a value through i2C, you will need to send the command:

Sprox Control	Write I2C	Adress	Table to send
0x58	0x13	@	&tab

6.1.4. Using the product's PC/SC interface through SCardTransmit

Use the **READER CONTROL** command APDU (FF F0 00 00 ...) as follow:

6.1.5. Using the product's PC/SC interface through ScardControl

DISCLAIMER

This document is provided for informational purposes only and shall not be construed as a commercial offer, a license, an advisory, fiduciary or professional relationship between PRO ACTIVE and you. No information provided in this document shall be considered a substitute for your independent investigation.

The information provided in document may be related to products or services that are not available in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the applicable law. While PRO ACTIVE will use reasonable efforts to provide reliable information, we don't warrant that this document is free of inaccuracies, errors and/or omissions, or that its content is appropriate for your particular use or up to date. PRO ACTIVE reserves the right to change the information at any time without notice.

PRO ACTIVE doesn't warrant any results derived from the use of the products described in this document. PRO ACTIVE will not be liable for any indirect, consequential or incidental damages, including but not limited to lost profits or revenues, business interruption, loss of data arising out of or in connection with the use, inability to use or reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these product may result in personal injury. PRO ACTIVE customers using or selling these products for use in such applications do so on their own risk and agree to fully indemnify PRO ACTIVE for any damages resulting from such improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of PRO ACTIVE and/or its suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you constitute a license and not a transfer of title: you may not remove this copyright notice nor the proprietary notices contained in this documents, and you are not allowed to publish or reproduce this document, either on the web or by any mean, without written permission of PRO ACTIVE.

Copyright © PRO ACTIVE SAS 2016, all rights reserved.

Editor's information

PRO ACTIVE SAS company with a capital of 227 000 €

RCS EVRY B 429 665 482

Parc Gutenberg, 13 voie La Cardon

91120 Palaiseau - FRANCE

CONTACT INFORMATION

For more information and to locate our sales office or distributor in your country or area, please visit

www.springcard.com